A Churn Prediction System for Telecommunication Company Using Random Forest and Convolution Neural Network Algorithms
DOI:
https://doi.org/10.4108/eetmca.v6i21.2181Keywords:
Telecoms, Churn, Relief-F, CNN, Random ForestAbstract
INTRODUCTION: Customer churn is a severe problem of migrating from one service provider to another. Due to the direct influence on the company's sales, companies are attempting to promote strategies to identify the churn of prospective consumers. Hence it is necessary to examine issues that influence customer churn to yield effective solutions to minimize churn.
OBJECTIVES: The major purpose of this work is to create a model of churn prediction that assists telecom operatives to envisage clients that are more probably to be prone to churn.
METHODS: The experimental strategy for this study leverages the machine learning techniques on the telecom churn dataset, employing an improved Relief-F feature selection algorithm to extract related features from the enormous dataset.
RESULTS: The result demonstrates that CNN has a high prediction capability of 94 percent compared to the 91 percent Random Forest classifier.
CONCLUSION: The results are of enormous relevance to the telecommunication business in improving churners and loyal clients.
Metrics
References
U. Sivarajah, M. M. Kamal, Z. Irani, and V. Weerakkody, “Critical analysis of Big Data challenges and analytical methods,” J. Bus. Res., vol. 70, pp. 263–286, Jan. 2017, doi: 10.1016/j.jbusres.2016.08.001.
B. He, Y. Shi, Q. Wan, and X. Zhao, “Prediction of Customer Attrition of Commercial Banks based on SVM Model,” Procedia Comput. Sci., vol. 31, pp. 423–430, 2014, doi: 10.1016/j.procs.2014.05.286.
A. M. Naser alzubaidi and E. S. Al-Shamery, “Projection pursuit random forest using discriminant feature analysis model for churners prediction in telecom industry,” Int. J. Electr. Comput. Eng., vol. 10, no. 2, p. 1406, Apr. 2020, doi: 10.11591/ijece.v10i2.pp1406-1421.
A. Rodan, A. Fayyoumi, H. Faris, J. Alsakran, and O. Al-Kadi, “Negative Correlation Learning for Customer Churn Prediction: A Comparison Study,” Sci. World J., vol. 2015, pp. 1–7, 2015, doi: 10.1155/2015/473283.
K. O. Kadiri and S. O. Lawal, “Comparative Analysis of Per Second Billing System of GLO, MTN, Etisalat, Airtel and Visafone in Nigeria,” Curr. J. Appl. Sci. Technol., pp. 1–8, Apr. 2019, doi: 10.9734/cjast/2019/v34i230125.
P. K. Banda and S. Tembo, “Factors Leading to Mobile Telecommunications Customer Churn in Zambia,” Int. J. Eng. Res. Africa, vol. 31, pp. 143–154, Jul. 2017, doi: 10.4028/www.scientific.net/JERA.31.143.
M. Singh, S. Singh, N. Seen, S. Kaushal, and H. Kumar, “Comparison of learning techniques for prediction of customer churn in telecommunication,” in 2018 28th International Telecommunication Networks and Applications Conference (ITNAC), Nov. 2018, pp. 1–5, doi: 10.1109/ATNAC.2018.8615326.
K. Kim, C.-H. Jun, and J. Lee, “Improved churn prediction in telecommunication industry by analyzing a large network,” Expert Syst. Appl., vol. 41, no. 15, pp. 6575–6584, Nov. 2014, doi: 10.1016/j.eswa.2014.05.014.
A. Keramati and S. M. S. Ardabili, “Churn analysis for an Iranian mobile operator,” Telecomm. Policy, vol. 35, no. 4, pp. 344–356, May 2011, doi: 10.1016/j.telpol.2011.02.009.
T. Hennig-Thurau and U. Hansen, Eds., Relationship Marketing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, “A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches,” IEEE Trans. Syst. Man, Cybern. Part C (Applications Rev., vol. 42, no. 4, pp. 463–484, Jul. 2012, doi: 10.1109/TSMCC.2011.2161285.
J. Brank et al., “Feature Selection,” in Encyclopedia of Machine Learning, Boston, MA: Springer US, 2011, pp. 402–406.
R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, and J. H. Moore, “Relief-based feature selection: Introduction and review,” J. Biomed. Inform., vol. 85, pp. 189–203, Sep. 2018, doi: 10.1016/j.jbi.2018.07.014.
R. P. L. DURGABAI and R. B. Y, “Feature Selection using ReliefF Algorithm,” IJARCCE, pp. 8215–8218, Oct. 2014, doi: 10.17148/IJARCCE.2014.31031.
D. M. D. Raj and R. Mohanasundaram, “An Efficient Filter-Based Feature Selection Model to Identify Significant Features from High-Dimensional Microarray Data,” Arab. J. Sci. Eng., vol. 45, no. 4, pp. 2619–2630, Apr. 2020, doi: 10.1007/s13369-020-04380-2.
R. Spencer, F. Thabtah, N. Abdelhamid, and M. Thompson, “Exploring feature selection and classification methods for predicting heart disease,” Digit. Heal., vol. 6, p. 205520762091477, Jan. 2020, doi: 10.1177/2055207620914777.
T. Vafeiadis, K. I. Diamantaras, G. Sarigiannidis, and K. C. Chatzisavvas, “A comparison of machine learning techniques for customer churn prediction,” Simul. Model. Pract. Theory, vol. 55, pp. 1–9, Jun. 2015, doi: 10.1016/j.simpat.2015.03.003.
Y. Qu, Y. Fang, and F. Yan, “Feature Selection Algorithm Based on Association Rules,” J. Phys. Conf. Ser., vol. 1168, p. 052012, Feb. 2019, doi: 10.1088/1742-6596/1168/5/052012.
J. Pamina, T. Dhiliphan, Rajkumar, S. Kiruthika, T. Suganya, and F. Femila, “Exploring Hybrid and Ensemble Models for Customer Churn Prediction in Telecom Sector,” Int. J. Recent Technol. Eng., vol. 8, no. 2, pp. 299–308, Jul. 2019, doi: 10.35940/ijrte.A9170.078219.
J. Britto and Gobinath, “A Detailed Review For Marketing Decision Making Support System In A Customer Churn Prediction,” Int. J. Sci. Technol. Res., vol. 9, no. 4, pp. 3698–3702, 2020.
Nisha Saini, Monika, and Dr. Kanwal Garg, “Churn Prediction in Telecommunication Industry using Decision Tree,” Int. J. Eng. Res., vol. V6, no. 04, Apr. 2017, doi: 10.17577/IJERTV6IS040379.
A. K. Ahmad, A. Jafar, and K. Aljoumaa, “Customer churn prediction in telecom using machine learning in big data platform,” J. Big Data, vol. 6, no. 1, p. 28, Dec. 2019, doi: 10.1186/s40537-019-0191-6.
F. Kayaalp, M. S. Basarslan, and K. Polat, “TSCBAS: A Novel Correlation Based Attribute Selection Method and Application on Telecommunications Churn Analysis,” in 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Sep. 2018, pp. 1–5, doi: 10.1109/IDAP.2018.8620935.
S. Rai, N. Khandelwal, and R. Boghey, “Analysis of Customer Churn Prediction in Telecom Sector Using CART Algorithm,” 2020, pp. 457–466.
Francisco, “Churn in The Telecom Industry Dataset,” 2017. https://bigml.com/user/cesareconti89/gallery/dataset/58cfbada49c4a13341003cba.
T. T. Le et al., “Differential privacy-based evaporative cooling feature selection and classification with relief-F and random forests,” Bioinformatics, vol. 33, no. 18, pp. 2906–2913, Sep. 2017, doi: 10.1093/bioinformatics/btx298.
Z. M. Hira and D. F. Gillies, “A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data,” Adv. Bioinformatics, vol. 2015, pp. 1–13, Jun. 2015, doi: 10.1155/2015/198363.
C.-L. Lin and C.-L. Fan, “Evaluation of CART, CHAID, and QUEST algorithms: a case study of construction defects in Taiwan,” J. Asian Archit. Build. Eng., vol. 18, no. 6, pp. 539–553, Nov. 2019, doi: 10.1080/13467581.2019.1696203.
A. SIMION-CONSTANTINESCU, A. I. DAMIAN, N. TAPUS, L.-G. PICIU, A. PURDILA, and B. DUMITRESCU, “Deep Neural Pipeline for Churn Prediction,” in 2018 17th RoEduNet Conference: Networking in Education and Research (RoEduNet), Sep. 2018, pp. 1–7, doi: 10.1109/ROEDUNET.2018.8514153.
S. A. Qureshi, A. S. Rehman, A. M. Qamar, A. Kamal, and A. Rehman, “Telecommunication subscribers’ churn prediction model using machine learning,” in Eighth International Conference on Digital Information Management (ICDIM 2013), Sep. 2013, pp. 131–136, doi: 10.1109/ICDIM.2013.6693977.
X. Jiang et al., “Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi,” Genome Biol., vol. 15, no. 9, p. 459, Sep. 2014, doi: 10.1186/s13059-014-0459-2.
M. O. Arowolo, M. O. Adebiyi, A. A. Adebiyi, and O. J. Okesola, “Predicting RNA-seq data using genetic algorithm and ensemble classification algorithms,” Indones. J. Electr. Eng. Comput. Sci., vol. 21, no. 2, p. 1073, Feb. 2021, doi: 10.11591/ijeecs.v21.i2.pp1073-1081.
M. O. Arowolo, M. O. Adebiyi, A. A. Ariyo, and O. J. Okesola, “A genetic algorithm approach for predicting ribonucleic acid sequencing data classification using KNN and decision tree,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 19, no. 1, p. 310, Feb. 2021, doi: 10.12928/telkomnika.v19i1.16381.
M. O. Arowolo, M. Adebiyi, A. Adebiyi, and O. Okesola, “PCA Model For RNA-Seq Malaria Vector Data Classification Using KNN And Decision Tree Algorithm,” in 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), Mar. 2020, pp. 1–8, doi: 10.1109/ICMCECS47690.2020.240881.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Mobile Communications and Applications
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.