Collaborative Relay Radio Network Using Reconfigurable Intelligent Surface
DOI:
https://doi.org/10.4108/eetmca.v7i3.2716Keywords:
RIS, OP, EC, Nakagami-m, GammaAbstract
In this paper, we have studied a model of a relay radio network system using Reconfigurable Intelligent Surface (RIS). Specifically, we used a relay network that uses RIS when there is an extra direct link from the Source (S) to the Destination (D). Next, an approximate closed-form expressions of the Outage Probability (OP) and Ergodic Capacity (EC) are considered. Based on the simulation results of OP and EC, the results show that our proposed system is more optimal than the system using supported RIS without direct link and the system without using RIS. In addition, changing the number of the RIS reflecting elements and the RIS’s location near (S) or (D) has a significant impact on the performance of the system. The analytical expression match the simulation results through the Monte Carlo simulation method. Furthermore, the simulation results of energy efficiency (EE) also show that when the target spectral efficiency (SE), Rth, is high (more than 5.45 b/s/Hz), the system using supported RIS with direct link will help reduce the transmit power and optimize the most energy compared to the other two systems.
Metrics
References
S. M. R. Islam, N. Avazov, O. A. Dobre and K. Kwak, Power- domain non- orthogonal multiple access (NOMA) in 5G systems: potentials and challenges, IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 721-742, (2017).
S. Li, L. Bariah, S. Muhaidat, P. C. Sofotasios, J. Liang and A. Wang, SWIPT- enabled cooperative NOMA with mth best relay selection, IEEE Open Journal of the Communications Society, vol. 1, pp. 1798-1807, (2020).
X. Wei, H. Al-Obiedollah, K Cumanan, M. Zhang, J. Tang, W. Wang and O. A. Dobre, Resource allocation technique for hybrid TDMA- NOMA system with opportunistic time assignment, IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1-6, (2020).
M. Zhang, K, Cumanan, W. Wang, A. G. Burr, Z. Ding, S. Lambortharan and O. A. Dobre, Energy efficiency optimization for secure transmission in a MIMO- NOMA system, IEEE Wireless Communications and Networking Conference (WCNC), pp. 1-6, (2020).
Y. Yuan, Y. Wu, Z. Ding, X. You, H. V. Poor, and L. Hanzo, NOMA for next-generation massive IoT: Performance potential and technology directions, IEEE Commun. Mag., vol. 59, no. 7, pp. 115–121, (Jul. 2021).
Y. Liu, W. Yi, Z. Ding, X. Liu, Dobre, Octavia, and N. Al-Dhahir, Application of NOMA in 6G networks: Future vision and research opportunities for next generation multiple access, (2021).
[Online] Available: https://arxiv.org/abs/2103.02334v1.
Z. Ding, M. Peng, and H. V. Poor, “Cooperative non-orthogonal multiple access in 5G systems,” IEEE Commun. Lett., vol. 19, no. 8, pp. 1462–1465, (Aug. 2015).
Z. Zhang, Z. Ma, M. Xiao, Z. Ding, and P. Fan, Full-duplex device-to device-aided cooperative non- orthogonal multiple access, IEEE Trans. Veh. Technol., vol. 66, no. 5, pp. 4467–4471, (May 2017).
X. Yue, Y. Liu, S. Kang, A. Nallanathan, and Z. Ding, Exploiting full/half-duplex user relaying in NOMA systems, IEEE Trans. Commun., vol. 66, no. 2, pp. 560–575, (Feb. 2018).
X. Yue, Y. Liu, Y. Yao, X. Li, R. Liu, and A. Nallanathan, Secure communications in a unified non-orthogonal multiple access framework, IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2163–2178, (Mar. 2020).
R. Abbas, M. Shirvanimoghaddam, Y. Li, and B. Vucetic, “A novel analytical framework for massive grant-free NOMA,” IEEE Trans. Commun., vol. 67, no. 3, pp. 2436–2449, (Mar. 2019).
X. Li, Q. Wang, Y. Liu, T. A. Tsiftsis, Z. Ding, and A. Nallanathan, UAV-aided multi-way NOMA networks with residual hardware impairments, IEEE Wireless Commun. Lett., vol. 9, no. 9, pp. 1538–1542, (Sep. 2020).
X. Yue, Y. Liu, Y. Yao, T. Li, X. Li, R. Liu, and A. Nallanathan, Outage behaviors of NOMA-based satellite network over shadowed rician fading channels, IEEE Trans. Veh. Technol., vol. 69, no. 6, pp. 6818–6821, (Jun. 2020).
Z. Ding and H. Vincent Poor, “On the application of BAC-NOMA to 6G umMTC,” IEEE Commun. Lett., vol. 25, no. 8, pp. 2678–2682, (Aug. 2021).
Q. Wu and R. Zhang, Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network, IEEE Commun. Mag., vol. 58, no. 1, pp. 106-112, (Jan. 2020).
M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead, IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525, (Nov. 2020).
E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, and R. Zhang, Wireless communications through reconfigurable intelligent surfaces, IEEE Access, vol. 7, pp. 116753–116773, (2019).
B. Di, H. Zhang, L. Song, and Z. Han, Reconfigurable Intelligent Surface for 6G: Communication, Sensing, and Localization, Tutorial Presentation at ICCC, (2020).
S. Hu, F. Rusek, and O. Edfors, Beyond massive MIMO: The potential of data transmission with large intelligent surfaces, IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2746–2758, (May 2018).
L. Dai, B. Wang, M. Wang, X. Yang, J. Tan, S. Bi, S. Xu, F. Yang, Z. Chen, M. D. Renzo, C.-B. Chae, and L. Hanzo, Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results, IEEE Access, vol. 8, pp. 45 913– 45 923, (Mar. 2020).
C. Pan, H. Ren, K. Wang, J. F. Kolb, M. Elkashlan, M. Chen, Y. Hao, J. Wang, A. L. S. Swindlehurst, X. You, and L. Hanzo, Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions, IEEE Commun. Mag., vol. 59, no. 6, pp. 14–20, (Jun. 2021).
Y. Liu, X. Liu, X. Mu, T. Hou, J. Xu, M. Renzo, and N. Al-Dhahir, Reconfigurable intelligent surfaces: Principles and opportunities, IEEE Commun. Surveys Tutorials, vol. 23, no. 3, pp. 1546–1577, (May 2021).
C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, Reconfigurable intelligent surfaces for energy efficiency in wireless communication, IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, (Jun. 2019).
T. V. Chien, A. K. Papazafeiropoulos, L. T. Tu, R. Chopra, S. Chatzinotas, and B. Ottersten, Outage probability analysis of IRS-assisted systems under spatially correlated channels, IEEE Wireless Commun. Lett., vol. 10, no. 8, pp. 1815–1819, (Aug. 2021).
H. Ibrahim, H. Tabassum, and U. T. Nguyen, Exact coverage analysis of intelligent reflecting surfaces with Nakagami-m channels, IEEE Trans. Veh. Technol., vol. 70, no. 1, pp. 1072–1076, (2021).
Q. Tao, J. Wang, and C. Zhong, Performance analysis of intelligent reflecting surface aided communication systems, IEEE Commun. Lett., vol. 24, no. 11, pp. 2464–2468, (Nov. 2020).
A. M. Salhab and M. H. Samuh, Accurate performance analysis of reconfigurable intelligent surfaces over Rician fading channels, IEEE Wireless Commun. Lett., vol. 10, no. 5, pp. 1051–1055, (May 2021).
Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112, (Jan. 2020).
C. Pradhan, A. Li, L. Song, J. Li, B. Vucetic, and Y. Li, Reconfigurable intelligent surface (RIS)-enhanced two-way OFDM communications, IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 16 270–16 275, (Dec. 2020).
T. Hou, Y. Liu, Z. Song, X. Sun, Y. Chen, and L. Hanzo, Reconfigurable Intelligent Surface Aided NOMA Networks, IEEE Commun. Lett., (Dec 2019).
[Online] Available: https://arxiv.org/abs/1912.10044 .
M. Diamanti, E. E. Tsiropoulou and S. Papavassiliou, The Joint Power of NOMA and Reconfigurable Intelligent Surfaces in SWIPT Networks, IEEE Commun. Lett., pp. 621-625, (2021).
[Online] Available: https://arxiv.org/abs/10.1109/SPAWC51858.2021.9593111.
X. Yue, J. Xie, Y. Liu, Z. Han, R. Liu and Z. Ding, Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface Assisted NOMA Networks, IEEE Communications Letters , (2021).
D. B. da Costa, H. Ding and J. Ge, Interference-limited relaying transmissions in dual-pop cooperative networks over Nakagami-m fading, IEEE Communications Letters, vol. 15, no. 5, pp. 503-505, (May 2011).
E. Björnson, Ö. Özdogan and E. G. Larsson, Intelligent Reflecting Surface vs. Decode-and-Forward: How Large Surfaces Are Needed to Beat Relaying?, IEEE Communications Letters, vol. 9, no. 2, pp. 244-248, (Feb 2020).
I.S.Gradshteyn and I.M.Ryzzhik, Table of Integrals, Series, and products, ed. 7, USA: Academic Press, New York, (2007).
I. Yildirim, A. Uyrus and E. Basar, Modeling and Analysis of Reconfigurable Intelligent Surfaces for Indoor and Outdoor Applications in Future Wireless Networks, IEEE Communications Letters, (2020).
Laurenson, D. I., Indoor Radio Channel Propagation Modeling by Ray Tracing Techniques, Edinburgh, Scotland, (1994).
Mill, M., Signal-to-noise ratio or SNR in audio: What is it for?, 2021.
[Online] Available: https://itigic.com/vi/signal-to-noise-ratio-or-snr-in-audio-what-is-it-for/
Nakagami, M., The m- Distribution- A general formula of intensity distribution of Rapid Fading, Faculty of Engineering, Kobe University, (1960).
Peebles, P. Z., Probability, Random Variables and Random Signal Principles, ed. 4, USA: McGraw-Hill Science, New York, (2000).
Petros S. Bithas, Nikos C. Sagias, P. Takis Mathiopoulos, George K. Karagiannidist and A. Rontogiannis, "Digital communications over Generalized- K fading channels", IEEE Communications Letters, pp. 684-687, (2005).
Riemann, B., Riemann Sum, (1800s).
[Online] Available: https://en.wikipedia.org/wiki/Riemann_sum.
S.Al- Ahmadi, H. Yanikomeroglu, "On the approximation of the Generalized- K distribution by a Gamma Distribution for modeling composite fading channels", IEEE Communications Letters, vol. 9.no. 2, pp. 706-713, (Feb 2010).
S. Sun, T. S. Rappaport, S. Rangan, T. A. Thomas ,A. Ghosh, I. Z. Kovacs, I. Rodriguez, O. Koymen, A. Partyka and J. Jarvelainen, Propagation Path Loss Models for 5G Urban Microand Macro-Cellular Scenarios, IEEE Communications Letters, (2016).
T. N. Do, G. Kaddoum, T. L. Nguyen, D. B. da Costa and Z. J. Haas, Aerial Reconfigurable Intelligent Surface-Aided Wireless Communication Systems, IEEE Communications Letters, (2021).
Widanagamage, A., Ergodic Capacity and Outage Performance of Amplify-and-Forward Protocols, Queensland University of Technology, Brisbane, Queensland, Australia, (Mar 2013).
V.T., Vo, Evaluation of multi-user random radio network performance on general fading channels, Post and Telecommunications Institute of Technology, Ho Chi Minh City, (2017).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Mobile Communications and Applications
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.