Easy Assistant: An App Design Study to Alleviate Daily Work Anxiety Among College Faculty
DOI:
https://doi.org/10.4108/eetpht.11.11052Keywords:
Cognitive Load Theory, Natural language Processing, Occupational mental health, Work anxiety, Cognitive load, mHealthAbstract
INTRODUCTION: Faculty juggle teaching, research, administration, and student support amid unstructured email, chat, and LMS alerts. These demands are linked to increased extraneous cognitive load and are associated with work anxiety. We evaluate a CLT-guided NLP app that structures messages into tasks.
OBJECTIVES: Assess technical performance and preliminary pre–post changes in anxiety and workload.
METHODS: Stage I validated a four-stage pipeline (cleaning; intent/entity recognition; probability calibration (evaluated by ECE); task structuring with priority gating). Stage II was a 4-week single-group pre–post feasibility study (N = 30) using GAD-7 and NASA-TLX.
RESULTS: Intent F1 = 0.92; entity F1 = 0.89; 87% of tasks met TC ≥ 0.8. GAD-7 decreased by 2.7 points (95% CI [−3.6, −1.8]) and NASA-TLX by 16.3 (95% CI [−20.5, −12.1]); usability was high (SUS = 78.2).
CONCLUSION: We observed pre–post reductions in workload and anxiety after four weeks of use; causal inference awaits controlled trials.
Downloads
References
[1] Manning JB, Blandford A, Edbrooke-Childs J. Digital companion choice to support teachers’ stress self-management: systematic approach through taxonomy creation. JMIR Form Res. 2022;6(2):e32312. doi:10.2196/32312.
[2] Dantes GR, et al. Brief mobile app–based mindfulness intervention for Indonesian senior high school teachers: protocol for a pilot randomized controlled trial. JMIR Res Protoc. 2024;13(1):e56693. doi:10.2196/56693.
[3] Callahan C, Kimber J, Hu E, Tanner L, Kunkle S. The real-world impact of app-based mindfulness on Headspace members with moderate and severe perceived stress: observational study. JMIR Mhealth Uhealth. 2024;12(1):e52968. doi:10.2196/52968.
[4] McCloud T, Jones R, Lewis G, Bell V, Tsakanikos E. Effectiveness of a mobile app intervention for anxiety and depression symptoms in university students: randomized controlled trial. J Med Internet Res. 2020;22(7):e15418. doi:10.2196/15418.
[5] Cameron G, et al. Effectiveness of digital mental health interventions in the workplace: umbrella review of systematic reviews. JMIR Ment Health. 2025;12:e67785. doi:10.2196/67785.
[6] Sîrbu V, David OA. Efficacy of app-based mobile health interventions for stress management: a systematic review and meta-analysis. Clin Psychol Rev. 2024;114:102515. doi:10.1016/j.cpr.2024.102515.
[7] C. He and Y. Deng, “05 AI-assisted inclusive interaction design system for users with cognitive differences”, artsci, vol. 25, no. 1, pp. 1–17, Jul. 2025.
[8] Wang H. Research on Technostress in Human-Computer Interaction. Philosopher’s Compass. 2024 Oct 1;1(1):43-50.
[9] Bellotti V, Ducheneaut N, Howard M, Smith I. Taking email to task: the design and evaluation of a task management centered email tool. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’03); 2003; Ft. Lauderdale, FL, USA. p.345-352. doi:10.1145/642611.642672.
[10] Sarrafzadeh B, Awadallah AH, Shokouhi M. Exploring email triage: challenges and opportunities. In: Proceedings of the 2019 Conference on Human Information Interaction and Retrieval (CHIIR ’19); 2019; Glasgow, Scotland, UK. p.325-329. doi:10.1145/3295750.3298960.
[11] Guo C, Pleiss G, Sun Y, Weinberger KQ. On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML 2017). Proc Mach Learn Res. 2017; 70:1321-1330. doi:10.48550/arXiv.1706.04599.
[12] Mosqueira-Rey E, Hernández-Pereira E, Alonso-Ríos D, Bobes-Bascarán J, Fernández-Leal Á. Human-in-the-loop machine learning: a state of the art. Artif Intell Rev. 2023;56(4):3005-3054. doi:10.1007/s10462-022-10246-w.
[13] Xin J, Tang R, Yu Y, Lin J. The Art of Abstention: Selective Prediction and Error Regularization for Natural Language Processing. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers); 2021; Online. p.1040–1051. doi:10.18653/v1/2021.acl-long.84.
[14] Sun Z, Yu H, Song X, Liu R, Yang Y, Zhou D. MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics; 2020; Online. p.2158–2170. doi:10.18653/v1/2020.acl-main.195.
[15] Jiao X, Yin Y, Shang L, Jiang X, Chen X, Li L, et al. TinyBERT: Distilling BERT for Natural Language Understanding. In: Findings of the Association for Computational Linguistics: EMNLP 2020; 2020; Online. p.4163–4174. doi:10.18653/v1/2020.findings-emnlp.372.
[16] Sanh V, Debut L, Chaumond J, Wolf T. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv. 2019. doi:10.48550/arXiv.1910.01108.
[17] Hwang H, Kim SM, Netterstrøm B, Han DH. The efficacy of a smartphone-based app on stress reduction: randomized controlled trial. J Med Internet Res. 2022;24(2):e28703. doi:10.2196/28703.
[18] Moberg C, Niles A, Beermann D. Guided self-help works: randomized waitlist-controlled trial of Pacifica, a mobile app integrating cognitive behavioral therapy and mindfulness for stress, anxiety, and depression. J Med Internet Res. 2019;21(6):e12556. doi:10.2196/12556.
[19] Linardon J, et al. Current evidence on the efficacy of mental health smartphone apps for symptoms of depression and anxiety: a meta-analysis of 176 randomized controlled trials. World Psychiatry. 2024; 23(1): 139-149. doi:10.1002/ wps.21183.
[20] Linardon J, Firth J, Torous J, Messer M, Fuller-Tyszkiewicz M. Efficacy of mental health smartphone apps on stress levels: a meta-analysis of randomized controlled trials. Health Psychol Rev. 2024; 18(4): 839-852. doi:10.1080/ 17437199. 2024.2379784.
[21] Gan DZ, McGillivray L, Larsen ME, Christensen H, Torok M. Technology-supported strategies for promoting user engagement with digital mental health interventions: a systematic review. Digit Health. 2022;8:20552076221098268. doi:10.1177/20552076221098268.
[22] Cheng VWS, Davenport T, Johnson D, Vella K, Hickie IB. Gamification in apps and technologies for improving mental health and well-being: systematic review. JMIR Ment Health. 2019;6(6):e13717. doi:10.2196/13717.
[23] Hwang WJ, Jo HH. Evaluation of the effectiveness of a mobile app-based stress-management program: a randomized controlled trial. Int J Environ Res Public Health. 2019;16(21):4270. doi:10.3390/ijerph16214270.
[24] Coelhoso CC, Tobo PR, Lacerda SS, Lima AH, Barrichello CRC, Amaro Jr E, et al. A new mental health mobile app for well-being and stress reduction in working women: randomized controlled trial. J Med Internet Res. 2019;21(11):e14269. doi:10.2196/14269.
[25] Heckendorf H, Lehr D. Efficacy of a web-based stress management intervention for beginning teachers on reducing stress and mechanisms of change: randomized controlled trial. J Med Internet Res. 2025;27:e58475. doi:10.2196/58475.
[26] Demirel S, et al. Assessing the effectiveness of STAPP@Work, a self-management mobile app, in reducing work stress and preventing burnout: single-case experimental design study. J Med Internet Res. 2024;26:e48883. doi:10.2196/48883.
[27] Mendelson T, Webb L, Artola A, Molinaro M, Sibinga E. An online mindfulness program for teachers: a feasibility study of the DeStress Monday at School program. Mindfulness. 2023;14(6):1419–1434. doi:10.1007/s12671-023-02142-3.
[28] Tan ZYA, Wong SH, Cheng LJ, Lau ST. Effectiveness of mobile-based mindfulness interventions in improving mindfulness skills and psychological outcomes for adults: a systematic review and meta-regression. Mindfulness. 2022;13(10):2379-2395. doi:10.1007/s12671-022-01962-z.
[29] East ML, Havard B, Hastings NB. Mental health mobile apps’ instruction: technology adoption theories applied in a mixed methods study of counseling faculty. J Technol Hum Serv. 2016;34(4):301-325. doi:10.1080/15228835.2016. 1233842.
[30] Sawrikar V, Mote K. Technology acceptance and trust: overlooked considerations in young people’s use of digital mental health interventions. Health Policy Technol. 2022;11(4):100686. doi:10.1016/j.hlpt.2022.100686.
[31] Uribe F A R, Favacho M F M, Moura P M N, et al. Effectiveness of an app-based intervention to improve well-being through cultivating positive thinking and positive emotions in an adult sample: study protocol for a randomized controlled trial. Front Psychol. 2023; 14: 1200960.
[32] Champion L, Economides M, Chandler C. The efficacy of a brief app-based mindfulness intervention on psychosocial outcomes in healthy adults: a pilot randomized controlled trial. PLoS One. 2018;13(12):e0209482. doi:10.1371/ journal.pone.0209482.
[33] Shankland R, Rosset E. Review of brief school-based positive psychological interventions: a taster for teachers and educators. Educ Psychol Rev. 2017; 29(2): 363-392. doi:10.1007/s10648-016-9357-3.
[34] Weber S, Lorenz C, Hemmings N. Improving stress and positive mental health at work via an app-based intervention: a large-scale multi-center randomized control trial. Front Psychol. 2019;10:2745. doi:10.3389/fpsyg.2019.02745.
[35] Hendriks T, Schotanus-Dijkstra M, Hassankhan A, De Jong J, Bohlmeijer E. The efficacy of multi-component positive psychology interventions: a systematic review and meta-analysis of randomized controlled trials. J Happiness Stud. 2020;21(1):357-390. doi:10.1007/s10902-019-00082-1.
[36] Koh J, Tng GY, Hartanto A. Potential and pitfalls of mobile mental health apps in traditional treatment: an umbrella review. J Pers Med. 2022; 12(9): 1376. doi:10.3390/ jpm12091376.
[37] Miguel C, et al. Universal, selective and indicated interventions for supporting mental health at the workplace: an umbrella review of meta-analyses. Occup Environ Med. 2023;80(4):225-236. doi:10.1136/oemed-2022-108698.
[38] Chong SOK, Pedron S, Abdelmalak N, Laxy M, Stephan AJ. An umbrella review of effectiveness and efficacy trials for app-based health interventions. NPJ Digit Med. 2023;6(1):233. doi:10.1038/s41746-023-00981-x.
[39] Russell E, Meyer B, de Jonge J, Sonnentag S, van den Heuvel M. Getting on top of work-email: A systematic review of 25 years of research on work-email activity. J Occup Organ Psychol. 2024;97:74–103. doi:10.1111/joop.12462.
[40] Kern P, Ohly S, Ďuranová L, Friedrichs J. Drowning in emails: investigating email classes and work stressors as antecedents of high email load and implications for well-being. Front Psychol. 2024; 15:1439070. doi:10.3389/ fpsyg.2024.1439070.
[41] Arnold M, Goldschmitt M, Rigotti T. Dealing with information overload: a comprehensive review. Front Psychol. 2023;14:1122200. doi:10.3389/fpsyg.2023.1122200.
[42] Bakker AB, Demerouti E. Job demands–resources theory: taking stock and looking forward. J Occup Health Psychol. 2017;22(3):273–285. doi:10.1037/ocp0000056.
[43] Khandaker MRU, Alassafi MO, Islam MR, Chen L. Transformer models for mining intents and predicting activities from incoming emails. Eng Appl Artif Intell. 2024;127:107450. doi:10.1016/j.engappai.2023.107450.
[44] Gollasch D, Branig M, Dähne H, Weber G. Automated task extraction from emails: aiding autistic individuals in the workplace. In: Antona M, Stephanidis C, editors. Universal Access in Human–Computer Interaction. 19th International Conference, UAHCI 2025, Held as Part of the 27th HCI International Conference, HCII 2025, Gothenburg, Sweden, June 22–27, 2025. Proceedings, Part I. Cham: Springer; 2025. p.343–359.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Jiao Jiang, Haoteng Chen, Yousheng Yao, Hao Gu, Junfeng Chen, Yesheng Hong

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.
