FootSense: An AI-Augmented Foot-Tactile System for Emotion and Social Regulation in Pervasive Health Contexts

Authors

DOI:

https://doi.org/10.4108/eetpht.11.11061

Keywords:

foot-tactile interaction, AI-augmented ambient intelligence, emotional regulation, social approach behavior, multi-mechanism model, wearable haptic system, digital health intervention

Abstract

INTRODUCTION: FootSense proposes a novel approach to emotional and social regulation through foot-tactile feedback in public spaces. Unlike conventional upper-body haptic systems, it utilizes the feet as a discreet, low-interference interface. By integrating rhythmic, directional, and social-cue tactile stimulation, FootSense modulates emotional states and enhances social interactions in dynamic environments.

OBJECTIVES: This study aims to develop and validate a multi-mechanism foot-tactile model that facilitates emotional relief and social approach in real-world public settings.

METHODS: We developed FootSense, an AI-augmented ambient intelligence system combining behavioral sensing, contextual inference, and adaptive tactile feedback. A two-week field experiment (N=200, five groups) was conducted across four public environments—mall, campus, hospital, and transit hub—to compare rhythmic, directional, and fusion tactile modes. Data were analyzed via ANOVA, mixed-effects modeling, and correlation analysis.

RESULTS: Rhythmic feedback reduced state anxiety (ΔSAI = –7.5, p<.01), directional feedback increased social approach (+83% vs. control, p<.01), and fusion mode showed the strongest overall effects (ΔSAI = –9.3, p<.001; +121% approach frequency). Tactile activation frequency correlated with improvements (r=.46–.51, p<.05). Environmental factors (noise, crowd density) moderated outcomes, with greater benefits in high-stress settings.

CONCLUSION: Embodied, AI-driven foot-tactile feedback offers an effective low-intrusion intervention for emotion regulation and social engagement across diverse public contexts. This work provides a theoretical and practical foundation for integrating AI-augmented haptics into pervasive health and human-centered urban design.

 

Downloads

Download data is not yet available.

References

[1] Xiang B. The Myth of the Nearby: Disappearance of Proximity in the Global Era. Beijing: China Renmin University Press; 2020.

[2] Hofmann SG, Moscovitch DA, Litz BT, Kim HJ, Davis LL. The effect of anxiety disorders on interpersonal behavior: Social avoidance and reduced social engagement. J Anxiety Disord. 2005;19(6):661–673.

doi:10.1016/j.janxdis.2004.07.005

[3] Grupe DW, Nitschke JB. Uncertainty and anticipation in anxiety: An integrated neurobiological model. Nat Rev Neurosci. 2013;14(7):488–501. doi:10.1038/nrn3524

[4] Blömeke S, Schürmann M, Kollmann T. Environmental uncertainty and physiological stress responses. Biol Psychol. 2020;152:107873. doi:10.1016/j.biopsycho.2020.107873

[5] García-Muñoz C, de la Coba P, Reyes del Paso GA. Effects of rhythmic sensory stimulation on autonomic nervous system activity and anxiety. Biol Psychol. 2020;154:107918. doi:10.1016/j.biopsycho.2020.107918

[6] Zhang G, Du Y, Zhang Y, Wang MY. A tactile sensing foot for single robot leg stabilization. IEEE Trans Robotics. 2021;37(2):456–468. doi:10.1109/TRO.2020.3046567

[7] Luckins S. Sonic City: The urban environment as a musical interface. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct; 2016; 1151–1155. doi:10.1145/2968219.2968246

[8] Tadin D, Lappin JS, Knapp A, et al. Mechanisms of tactile feedback in human sensorimotor processing. J Neurophysiol.

[9] Picard RW. Affective computing: challenges. Int J Hum Comput Stud. 2003;59(1-2):55-64. doi:10.1016/S1071-5819(03)00052-1

[10] Choi S, Kuchenbecker KJ. Vibrotactile display: perception, technology, and applications. Proc IEEE. 2012;101(9):2093-104. doi:10.1109/JPROC.2012.2221071

[11] Albuquerque I, Cardoso T. Immediate effects of mechanical tactile stimulation on heart rate variability: A systematic review. Appl Psychophysiol Biofeedback. 2022;47(2):111–123. doi:10.1007/s10484-022-09536-5

[12] Wolbers T, Wiener JM. Challenges for identifying the neural mechanisms supporting spatial navigation. Front Hum Neurosci. 2014;8:571. doi:10.3389/fnhum.2014.00571

[13] Kacorri H, Fakouri M, Wobbrock JO. Environmental support for blind and visually impaired people: a study of wayfinding and object recognition in public spaces. ACM Trans Access Comput. 2020;13(3):1–30. doi:10.1145/3397349

[14] Elliot AJ, Covington MV. Approach and avoidance motivation. Educ Psychol Rev. 2001;13(2):73–92. doi:10.1023/A:1009009018235

[15] Fazio RH, Jackson JR, Dunton BC, Williams CJ. Variability in automatic activation as an unobtrusive measure of racial attitudes: a bona fide pipeline? J Pers Soc Psychol. 1995;69(6):1013–1027. doi:10.1037//0022-3514.69.6.1013

[16] Ding X, Zhang Y, Wang H. Social-band: Subtle foot-tactile cues for private notification in group activities. Proc ACM Hum-Comput Interact. 2022;6(ISS):589. doi:10.1145/3567745

[17] Hatscher B, Hansen C, Nestler T. GazeTap: Towards hands-free interaction in the operating room. In: Proceedings of the 19th International Conference on Multimodal Interaction. 2017;345–349. doi:10.1145/3131672.3131700

[18] Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci. 2009;10(5):345-59. doi:10.1038/nrn2621

[19] McGlone F, Wessberg J, Olausson H. Discriminative and affective touch: sensing and feeling. Neuron. 2014;82(4):737-55. doi:10.1016/j.neuron.2014.05.001

[20] Song Z, Li C, Quan Z, Mu S, Li X, Zhao Z, Jin W, Wu C, Ding W, Zhang XP. TacTID: High-performance visuo-tactile sensor-based terrain identification for legged robots. IEEE Sensors Journal. 2024 Jun 27; 24(16): 26487-95. 10.1109/JSEN.2024.3417514

[21] Israr A, Poupyrev I. Tactile brush: drawing on skin with a tactile grid display. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2011. p. 2019-28. doi:10.1145/1978942.1979231

[22] Gordon I, Voos AC, Bennett RH, et al. Brain mechanisms for processing affective touch. Hum Brain Mapp. 2013;34(4):914-22. doi:10.1002/hbm.21480

[23] Kakuda N, Wada N, Takeda K. Effect of plantar tactile stimulation on standing posture and autonomic nervous activity. Neurosci Lett. 2020; 736: 135292. doi:10.1016/ j.neulet.2020.135292

[24] Wang Z. Micro-Lace Electrode-Based Skin Conductance Sensor for Integrated Physical and Mental Activity Monitoring: A Design Innovation Perspective. BIG. D. 2025 Jan 1;2(1):60-5.

[25] Campos J, Oliveira JL. YAKE! Keyword extraction from single documents using multiple local features. Inf Sci. 2020;509:257–289. doi:10.1016/j.ins.2019.09.013

[26] Grootendorst M. BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv preprint. 2022;arXiv:2203.05794. doi:10.48550/arXiv.2203.05794

[27] Liu Y, Ott M, Goyal N, et al. RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint. 2019;arXiv:1907.11692. doi:10.48550/arXiv.1907.11692

[28] Zhao, Y., Chen, M., Liu, Q., & Wang, T. Emotion-aware wearables: Contextual sensing and adaptive feedback in urban environments. IEEE Pervasive Computing. 2023;22(3):54–65. doi:10.1109/MPRV.2023.3268493

[29] Lehrer PM, Gevirtz R. Heart rate variability biofeedback: how and why does it work? Front Psychol. 2014;5:756. doi:10.3389/fpsyg.2014.00756

[30] Li Q, Becker B, Wernicke J, et al. Foot massage evokes oxytocin release and activation of orbitofrontal cortex in association with increased pleasantness. Neuroimage. 2019;186:241-51.doi:10.1016/j.neuroimage.2018.11.008

Downloads

Published

14-01-2026

Issue

Section

Digital Health and Product Innovation Design

How to Cite

1.
Shi Z, Zhou H, Chen L, Chen Y, Huang G, Ying W. FootSense: An AI-Augmented Foot-Tactile System for Emotion and Social Regulation in Pervasive Health Contexts. EAI Endorsed Trans Perv Health Tech [Internet]. 2026 Jan. 14 [cited 2026 Jan. 14];11. Available from: https://publications.eai.eu/index.php/phat/article/view/11061