Detection procedures for Patients of Alzheimer’s Disease using Waveform Features of Pupil Light Reflex in response to Chromatic Stimuli
DOI:
https://doi.org/10.4108/eai.17-12-2020.167656Keywords:
Pupil, Pupil Light Reflex, Alzheimer’s Disease, Sparse estimation, logistic regressionAbstract
INTRODUCTION: Various studies conducted to predict Alzheimer’s disease (AD) indicate that some pupillight reflex (PLR) features may contain symptoms of the disease. An effective procedure that can predict thedisease using PLRs is needed.
OBJECTIVES: Two analytic approaches were examined in order to estimate the possibility of identifying Alzheimer’s patients using features of PLR waveforms from chromatic stimuli. In particular, an index of the probability of being an AD patient is introduced, and the features which contributed to PLRs the most were extracted.
METHOD: PLRs for three colours of light pulses (red: 635nm, blue: 470nm, white: CIE x=0.28, y=0.31) at twolevels of intensity (10 and 100 cd/m2) were observed at 60Hz for 10s. Pulses consisted of pre-stimulus (2s), light pulse (1s) and restoration phases (7s). 15 features were extracted from each PLR waveform, such as pupil constriction velocity, pupil response delay, etc. Seven AD patients (age:42-84, mean=68.1) and 12 similar-aged control subjects (age:62-89, mean=72.1).
RESULTS: The first approach was based on factor scores of features of PLRs. Two factor scores were extracted from the 15 features across all measurement conditions, and logistic functions were introduced in order to calculate the probability of identifying AD patients. Function parameters were estimated using a Bayesian technique, such as the Markov chain Monte Carlo method (MCMC). In consideration of the number of participants and biased data distributions, the second approach was based on the sparse modelling technique. Least absolute shrinkage and selection operator (LASSO) was applied to sets of PLR features from each light stimulus, together with the ages of subjects, and optimised result sets were obtained. Prediction performance was higher than with the previous procedure.
CONCLUSION: The use of PLRs features from chromatic stimuli for identifying AD was developed and evaluated.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Pervasive Health and Technology
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.