Rule Based Mamdani Fuzzy Inference System to Analyze Efficacy of COVID19 Vaccines

Authors

  • Poonam Mittal J C Bose University of Science and Technology
  • S P Abirami Vellore Institute of Technology University image/svg+xml
  • Puppala Ramya Koneru Lakshmaiah Education Foundation image/svg+xml
  • Balajee J Mother Theresa Institute of Engineering and Technology
  • Elangovan Muniyandy Saveetha School of Engineering

DOI:

https://doi.org/10.4108/eetpht.10.5571

Keywords:

Covid19, Covid19 Vaccines, Side-Effects, Demographic Factors, Efficacy of Covid Vaccines, Medical History, Fuzzy Inference System, Mandani Fuzzy Model

Abstract

INTRODUCTION: COVID-19 was declared as most dangerous disease and even after maintaining so many preventive measures, vaccination is the only preventive option from SARS-CoV-2. Vaccination has controlled the risk and spreading of virus that causes COVID-19. Vaccines can help in preventing serious illness and death. Before recommendation of COVID-19 vaccines, clinical experiments are being conducted with thousands of grown person and children. In controlled      situations like clinical trials, efficacy refers to how well a vaccination prevents symptomatic or asymptomatic illness.

OBJECTIVES: The effectiveness of a vaccine relates to how effectively it works in the actual world.

METHODS: This research presents a novel approach to model the efficacy of COVID’19 vaccines based on Mamdani Fuzzy system Modelling. The proposed fuzzy model aims to gauge the impact of epidemiological and clinical factors on which the efficacy of COVID’19 vaccines.

RESULTS: In this study, 8 different aspects are considered, which are classified as efficiency evaluating factors. To prepare this model, data has been accumulated from various research papers, reliable news articles on vaccine response in multiple regions, published journals etc.   A set of Fuzzy rules was inferred based on classified parameters. This fuzzy inference system is expected to be of great help in recommending the most appropriate vaccine on the basis of several parameters. 

CONCLUSION: It aims to give an idea to pharmaceutical manufacturers on how they can improve vaccine efficacy and for the decision making that which one to be followed.

Downloads

Download data is not yet available.

References

Mittal, P., Mangla, M., Sharma, N., Reena, Satpathy, S., & Mohanty, S. N. (2022). Fuzzy Modelling of Clinical and Epidemiological Factors for COVID-19. International Journal of System Dynamics Applications (IJSDA), 11(1), 1-16. http://doi.org/10.4018/IJSDA.307566. DOI: https://doi.org/10.4018/IJSDA.307566

https://www/.who.int/covid-19/vaccines

Menni, C., Klaser, K., May, A., Polidori, L., Capdevila, J., Louca, P., Sudre, C. H., Nguyen, L. H., Drew, D. A., Merino, J., Hu, C., Selvachandran, S., Antonelli, M., Murray, B., Canas, L. S., Molteni, E., Graham, M. S., Modat, M., Joshi, A. D., … Spector, T. D. (2021). Vaccine side-effects and SARS-COV-2 infection after vaccination in users of the COVID symptom study app in the UK: A prospective observational study. The Lancet Infectious Diseases, 21(7), 939–949. https://doi.org/10.1016/s1473-3099(21)00224-3 DOI: https://doi.org/10.1016/S1473-3099(21)00224-3

Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., & Zaks, T. (2020). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New England journal of medicine.

Mahmud, M. S., Kamrujjaman, M., Adan, M. M., Hossain, M. A., Rahman, M. M., Islam, M. S., Mohebujjaman, M., & Molla, M. M. (2022). Vaccine efficacy and SARS-COV-2 control in California and U.S. during the session 2020–2026: A modeling study. Infectious Disease Modelling,7(1),62–81. https://doi.org/10.1016/j.idm.2021.11.002.

Ghasemiyeh, P., Mohammadi-Samani, S., Firouzabadi, N., Dehshahri, A., & Vazin, A. (2021). A focused review on technologies, mechanisms, safety, and efficacy of available COVID-19 vaccines. International Immunopharmacology, 100, 108162. https://doi.org/10.1016/j.intimp.2021.108162. DOI: https://doi.org/10.1016/j.intimp.2021.108162

Saeed, B. Q., Al-Shahrabi, R., Alhaj, S. S., Alkokhardi, Z. M., & Adrees, A. O. (2021). Side effects and perceptions following Sinopharm covid-19 vaccination. International Journal of Infectious Diseases, 111, 219–226. https://doi.org/10.1016/j.ijid.2021.08.013

Bignucolo, A., Scarabel, L., Mezzalira, S., Polesel, J., Cecchin, E., & Toffoli, G. (2021). Sex disparities in efficacy in COVID-19 vaccines: A systematic review and meta-analysis. Vaccines, 9(8), 825. https://doi.org/10.3390/vaccines9080825 DOI: https://doi.org/10.3390/vaccines9080825

Voysey, M., Clemens, S. A. C., Madhi, S. A., Weckx, L. Y., Folegatti, P. M., Aley, P. K., ... & Bird, O. (2021). Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. The Lancet, 397(10277), 881-891. DOI: https://doi.org/10.1016/S0140-6736(21)00432-3

update52_vaccines.pdf (who.int)

Jahan, N., Rahman, F. I., Saha, P., Ether, S. A., Roknuzzaman, A. S. M., Sarker, R., Kalam, K. T., Haq, K., Nyeen, J., Himi, H. Z., Hossain, M. N., Chowdhury, M. H., Uddin, M. M., & Alam, N. H. (2021). Side effects following administration of the first dose of Oxford-AstraZeneca’s Covishield vaccine in Bangladesh: A cross-sectional study. Infectious Disease Reports, 13(4), 888–901. https://doi.org/10.3390/idr13040080 DOI: https://doi.org/10.3390/idr13040080

Overview of COVID-19 Vaccines | CDC

Saeed, B. Q., Al-Shahrabi, R., Alhaj, S. S., Alkokhardi, Z. M., & Adrees, A. O. (2021). Side effects and perceptions following Sinopharm covid-19 vaccination. International Journal of Infectious Diseases, 111, 219–226. https://doi.org/10.1016/j.ijid.2021.08.013 DOI: https://doi.org/10.1016/j.ijid.2021.08.013

Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., ... & Zaks, T. (2020). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New England journal of medicine. DOI: https://doi.org/10.1056/NEJMoa2035389

https://www.ncbi.nlm.nih.gov

Halperin, S. A., Ye, L., MacKinnon-Cameron, D., Smith, B., Cahn, P. E., Ruiz-Palacios, G. M., Ikram, A., Lanas, F., Lourdes Guerrero, M., Muñoz Navarro, S. R., Sued, O., Lioznov, D. A., Dzutseva, V., Parveen, G., Zhu, F., Leppan, L., Langley, J. M., Barreto, L., Gou, J., … Zubkova, T. (2022). Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: An international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial. The Lancet, 399(10321), 237–248. https://doi.org/10.1016/s0140-6736(21)02753-7 DOI: https://doi.org/10.1016/S0140-6736(21)02753-7

Mahmud, M. S., Kamrujjaman, M., Adan, M. M., Hossain, M. A., Rahman, M. M., Islam, M. S., Mohebujjaman, M., & Molla, M. M. (2022). Vaccine efficacy and SARS-COV-2 control in California and U.S. during the session 2020–2026: A modeling study. Infectious Disease Modelling, 7(1), 62–81. https://doi.org/10.1016/j.idm.2021.11.002 DOI: https://doi.org/10.1016/j.idm.2021.11.002

Shenoy, P., Ahmed, S., Paul, A., Cherian, S., Umesh, R., shenoy, V., Vijayan, A., Babu, S., Nivin, S., & Thambi, A. (2021). Hybrid immunity versus vaccine-induced immunity against SARS cov2 in patients with autoimmune rheumatic diseases. https://doi.org/10.1101/2021.08.26.21258418 DOI: https://doi.org/10.1101/2021.08.26.21258418

Ezhilmaran, D., & Joseph, P. R. (2017). Fuzzy inference system for finger vein biometric images. 2017 International Conference on Inventive Systems and Control(ICISC). https://doi.org/10.1109/icisc.2017.8068645 DOI: https://doi.org/10.1109/ICISC.2017.8068645

Jin, P., Guo, X., Chen, W., Ma, S., Pan, H., Dai, L., Du, P., Wang, L., Jin, L., Chen, Y., Shi, F., Liu, J., Xu, X., Zhang, Y., Gao, G. F., Chen, C., Feng, J., Li, J., & Zhu, F. (2022). Safety and immunogenicity of heterologous boost immunization with an adenovirus type-5-vectored and protein-subunit-based COVID-19 vaccine (convidecia/ZF2001): A randomized, observer-blinded, placebo-controlled trial. PLOS Medicine, 19(5). https://doi.org/10.1371/journal.pmed.1003953 DOI: https://doi.org/10.1101/2022.02.24.22271445

Naghdy, F., & Wai-Kwong Chan. (n.d.). A FLC based decision support system for body fluid balancing in a major surgery. 1996 Australian New Zealand Conference on Intelligent Information Systems. Proceedings. ANZIIS 96. https://doi.org/10.1109/anziis.1996.573888 DOI: https://doi.org/10.1109/ANZIIS.1996.573888

Zare, H., Rezapour, H., Fereidouni, A., Nikpour, S., Mahmoudzadeh, S., Royce, S. G., & Fereidouni, M. (2022). Analysis and comparison of anti-RBD neutralizing antibodies from AZD-1222, sputnik V, Sinopharm and covaxin vaccines and its relationship with age and gender among health care workers. https://doi.org/10.21203/rs.3.rs-1683390/v1 DOI: https://doi.org/10.21203/rs.3.rs-1683390/v1

Delshad, M., Sanaei, M.-J., Pourbagheri-Sigaroodi, A., & Bashash, D. (2022). Host genetic diversity and genetic variations of SARS-COV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. International Immunopharmacology, 111, 109128. https://doi.org/10.1016/j.intimp.2022.109128 DOI: https://doi.org/10.1016/j.intimp.2022.109128

Collections.plos.org

Ukey, R., Bruiners, N., Mishra, H., Mishra, P. K., McCloskey, D., Onyuka, A., Chen, F., Pinter, A., Weiskopf, D., Sette, A., Roy, J., Gaur, S., & Gennaro, M. L. (2022). Dichotomy between the humoral and cellular responses elicited by mrna and adenoviral vector vaccines against SARS-COV-2. BMC Medicine, 20(1). https://doi.org/10.1186/s12916-022-02252-0 DOI: https://doi.org/10.1186/s12916-022-02252-0

Monika Mangla, Nonita Sharma and Poonam Mittal,” A Fuzzy Expert System for predicting the Mortality of COVID’19”, Turkish Journal of Electrical Engineering & Computer Science, doi:10.3906/elk, Nov.-2020. (SCI). DOI: https://doi.org/10.3906/elk-2008-27

Forecasting COVID-19 Pandemic Using Prophet, ARIMA, and Hybrid Stacked LSTM-GRU Models in India, Sweeti Sah, Surendiran, R.dhanalakshmi, Sachi Nandan Mohanty, Fayadh Alenezi, Kemal Polat, Computational and Mathematical Methods in Medicine , 2022, Vol 2022, Article ID 1556025, doi.org/10.1155/2022/1556025, ISSN: 17486718, 1748670X DOI: https://doi.org/10.1155/2022/1556025

COVID-Transformer: Interpretable COVID-19 Detection Using Vision Transformer for Healthcare, Debaditya Shome, T. Kar, Sachi Nandan Mohanty, Prayag Tiwari, Khan Mu-hammad, Abdullah AlTameem, Yazhou Zhang, Abdul Khader Jilani Saudagar, Int. J. Environ-mental Research and Public Health (2021), Vol 18, Issue 21 1-14. https://doi.org/10.3390/ijerph182111086, ISSN: 1660-4601. DOI: https://doi.org/10.3390/ijerph182111086

Geospatial Multivariate Analysis of COVID-19: A Global Perspective, Monika Mangla, Nonita Sharma, Ankita Mohanty, Suneeta Satpathy, Sachi Nandan Mohanty, Tanupriya Choudhury, Geo Journal, (2021).

Automated COVID-19 Diagnosis and Classification using Convolutional Neural Network with Fusion based Feature Extraction Model, K Shankar, Sachi Nandan Mohanty, Kusum Yadav, T. Gopalakrishnan, Cognitive Neurodynamics, (2021), Vol 16, Issue 1, doi.org/10.1007/s11571-021-09712-y. ISSN: 1871-4099. DOI: https://doi.org/10.1007/s11571-021-09712-y

A Deep Learning Method to Forecast Covid-19 Outbreak, Satyajit Dash, Sujata Chakravati, Sachi Nandan Mohanty, Chinmaya Ranjan Patnaik, & Sarika Jain, New Generation Computing, 39(2), 437-461, (2021). doi: 10.1007/s00354-021-00129-z. ISSN: 02883635. DOI: https://doi.org/10.1007/s00354-021-00129-z

Predicting mortality rate and associated risks in COVID -19 patients, Suneeta Satpathy, Monika Mangala, Nonita Sharma, Hardik Deshmukh, Sachi Nandan Mohanty, Spatial Information Research, (2021). 19(2), 455–464, Doi.org/10.1007/s41324-021-00379-5, ISSN: 2366-3286. DOI: https://doi.org/10.1007/s41324-021-00379-5

Analysis of COVID-19 Infections on a CT Images Using DeepSence Model, Adil Khadidos, Alaa O. Khadisos, Srihari Kannan, Yuvaraj Natarajan, Sachi Nandan Mohanty, & George Tsaramirsis, Frontiers in Public Health, (2020). Doi: doi.org/10.3389/fpubh.2020.599550. ISSN: 2296-2565

Downloads

Published

27-03-2024

How to Cite

1.
Mittal P, Abirami SP, Ramya P, J B, Muniyandy E. Rule Based Mamdani Fuzzy Inference System to Analyze Efficacy of COVID19 Vaccines. EAI Endorsed Trans Perv Health Tech [Internet]. 2024 Mar. 27 [cited 2024 Apr. 25];10. Available from: https://publications.eai.eu/index.php/phat/article/view/5571