Classification of Cardiovascular Arrhythmia Using Deep Learning Techniques: A Review

Authors

DOI:

https://doi.org/10.4108/eetpht.10.6421

Keywords:

Arrhythmia, Cardiovascular Disease, CNN, Deep Learning, Electrocardiogram

Abstract

Deep Learning (DL), an offshoot of Machine Learning (ML) has emerged as a powerful and feasible solution for medical image analysis due to advancements in robust computer software and hardware technologies. It plays a key role in Cardiovascular disease (CVD) diagnosis by detecting anomalies in Electrocardiogram (ECG) signals. Cardiac arrhythmia, which refers to irregular heartbeat, may signal an early symptom of CVD and can lead to fatal outcomes if ignored. Accurate detection of arrhythmia is very challenging even for experts to distinguish between acute and chronic conditions in ECG readings. This triggered the focus of researchers to explore the application of Artificial Intelligence for ECG classification. Traditional machine learning methods use handcrafted features that require domain knowledge. The new era in DL makes the automatic detection of Cardiovascular Disease (CVD) possible. In this paper, an exhaustive review of DL-based techniques for ECG classification has been presented. Research findings in this survey indicate the challenges and issues with arrhythmia detection, such as single lead and multiple lead ECG signals, choice of the size of the training data set, and the number of arrhythmia classes, etc. The study also signifies that there is great scope for improving the performance of arrhythmia prediction models by employing hybrid ensemble learning, time series analysis using Recurrent Neural Network architectures and identification of unexplored classes of arrhythmia.

Downloads

Download data is not yet available.

References

Edward Nason. (Jan 2007). An overview of cardiovascular disease and research. https://www.rand.org/content/dam/rand/pubs/working_papers/2007/RAND_WR467.pdf.

Anand. S S, and Yusuf S, (2011). Stemming the global tsunami of cardiovascular disease. The Lancet. 377(9765), 529-532. DOI: https://doi.org/10.1016/S0140-6736(10)62346-X

World Health Organization. (n.d.).( July 22, 2020) Cardiovascular Diseases. www.who.int. Available from https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1.

Kumar A. Cardiovascular diseases: Are we overlooking some cardiovascular disease risk factors/ markers? Journal of Biomedical Sciences, (2014). 3(1). https://doi.org/10.3823/1021.

Abdalla F Y O, Wu L, Ullah H, Ren G, Noor A, Mkindu H, and Zhao Y. Deep convolutional neural network application to classify the ECG arrhythmia. Signal, Image and Video Processing. 2020. 14(7), 1431–1439. https://doi.org/10.1007/s11760-020-01688-2. DOI: https://doi.org/10.1007/s11760-020-01688-2

Xu X and Liu Y. ECG QRS complex detection using Slope Vector Waveform (SVW) algorithm. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings; 2004. 2004,26 V, 3597–3600. https://doi.org/10.1109/iembs.2004.1404011. DOI: https://doi.org/10.1109/IEMBS.2004.1404011

Gao X. Diagnosing Abnormal Electrocardiogram (ECG) via Deep Learning. Practical Applications of Electrocardiogram. 2020. https://doi.org/10.5772/intechopen.85509. DOI: https://doi.org/10.5772/intechopen.85509

Ahmed W and Khalid S. ECG signal processing for recognition of cardiovascular diseases: A survey. 2016 6th International Conference on Innovative Computing Technology, INTECH; 2016, 677–682,2017. https://doi.org/10.1109/INTECH.2016.7845089. DOI: https://doi.org/10.1109/INTECH.2016.7845089

Lamba P and Rawal K. A Survey of Algorithms for Feature Extraction and Feature Classification Methods. International Conference on Automation, Computational and Technology Management, ICACTM 2019, 338–341. https://doi.org/10.1109/ICACTM.2019.8776804 DOI: https://doi.org/10.1109/ICACTM.2019.8776804

Patil D D, and Singh R P. Reviewing Different ECG-Signal Feature Extraction and Classification Approaches. International Journal of Scientific & Engineering Research; 2016. Volume, 7(3), 1270–1274.

Parvaneh S and Rubin J. Electrocardiogram Monitoring and Interpretation: From Traditional Machine Learning to Deep Learning, and Their Combination. Computing in Cardiology; 2018. https://doi.org/10.22489/CinC.2018.144. DOI: https://doi.org/10.22489/CinC.2018.144

Chiang H T, Hsieh Y Y, Fu S W, Hung K H, Tsao Y, and Chien S Y. Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders. IEEE Access; 2019. 7, 60806–60813. https://doi.org/10.1109/ACCESS.2019.2912036 DOI: https://doi.org/10.1109/ACCESS.2019.2912036

Yoon D, Lim H S, Jung K, Kim T Y, & and Lee S. Deep learning-based electrocardiogram signal noise detection and screening model. Healthcare Informatics Research; 2019. 25(3), 201–211. https://doi.org/10.4258/hir.2019.25.3.201. DOI: https://doi.org/10.4258/hir.2019.25.3.201

Serhani M A, Kassabi H T EI, Ismail H, and Navaz A N. ECG monitoring systems: Review, architecture, processes, and key challenges. Sensors (Switzerland); 2020. 20(6). https://doi.org/10.3390/s20061796. DOI: https://doi.org/10.3390/s20061796

Sodmann P, Vollmer M, and Nath N A. Convolutional Neural Network for ECG. Institute of Physics and Enginerring in Medicine; 2018.

Yan Yan Qin X, and Wang L. ECG Annotation and Diagnosis Classification Techniques. Health Informatics Data Analysis, Springer; 2017. 129–154. https://doi.org/10.1007/978-3-319-44981-4_9 DOI: https://doi.org/10.1007/978-3-319-44981-4_9

Physionet. (2006, July 6). Annotation. www.Physionet.Org. Available at https://archive.physionet.org/physiobank/annotations.shtml

Qiu L, Cai W, Yu J , Zhong J, Wang Y , Li W, Chen Y, and Wang L. A two-stage ECG signal denoising method based on deep convolutional network; 2020. bioRxiv:https://t.co/wUU6azuY3j , doi.org/10.1101/2020.03.27.012831 DOI: https://doi.org/10.1101/2020.03.27.012831

Hassanien A E, Kilany M, and Houssein E H. ECG signals classification: a review. International Journal of Intelligent Engineering Informatics, 2017, 5(4), 376. https://doi.org/10.1504/ijiei.2017.10008807 DOI: https://doi.org/10.1504/IJIEI.2017.10008807

Karthikeyan, N., & Rani, M. S. “ECG Classification Using Machine Learning Classifiers with Optimal Feature Selection Methods”. In Evolutionary Computing and Mobile Sustainable Networks Springer, Singapore; 2022. (pp. 277-289). DOI: https://doi.org/10.1007/978-981-16-9605-3_19

Nithya, S, & Rani, M S.: XACML: Explainable Arrhythmia Classification Model Using Machine Learning. In International Advanced Computing Conference. Cham: Springer Nature Switzerland.pp.219-231 (2022) DOI: https://doi.org/10.1007/978-3-031-35641-4_18

Lundervold A S, and Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Zeitschrift Fur Medizinische Physik, 2019. 29(2), 102–127. https://doi.org/10.1016/j.zemedi.2018.11.002 DOI: https://doi.org/10.1016/j.zemedi.2018.11.002

Eplitzky B A, McRoberts M, and Ghanbari H. Deep learning for comprehensive ECG annotation. Heart Rhythm, 2020. 17(5), 881–888. https://doi.org/10.1016/j.hrthm.2020.02.015 DOI: https://doi.org/10.1016/j.hrthm.2020.02.015

Goto S and Goto S. Application of Neural Networks to 12-Lead Electrocardiography ― Current Status and Future Directions ― Circulation Reports, 2019. 1(11), 481–486. https://doi.org/10.1253/circrep.cr-19-0096 DOI: https://doi.org/10.1253/circrep.CR-19-0096

Choi K S, Shin J S, Lee J J, Kim Y S, Kim S.B, and Kim C W. In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochemical and Biophysical Research Communications, 2005. 330(4), 1299–1305. https://doi.org/10.1016/j.bbrc.2005.03.111 DOI: https://doi.org/10.1016/j.bbrc.2005.03.111

Yan Yang Y, Zhang J W, Zang G, and Pu J. The primary use of artificial intelligence in cardiovascular diseases: What kind of potential role does artificial intelligence play in future medicine? Journal of Geriatric Cardiology, 2019. 16(8),585–591. https://doi.org/10.11909/j.issn.1671-5411.2019.08.010

Najafabadi M M, Villanustre F, Khoshgoftaar T M, Seliya N, Wald R, and Muharemagic E. Deep learning applications and challenges in big data analytics. Journal of Big Data, 2015. 2(1), 1–21. https://doi.org/10.1186/s40537-014-0007-7 DOI: https://doi.org/10.1186/s40537-014-0007-7

Zhang M, Cui Z, Neumann M, and Y Chen. An end-to-end deep learning architecture for graph classification. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 4438–4445. DOI: https://doi.org/10.1609/aaai.v32i1.11782

Deng L and Yu D. Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 2014. 7(3–4), 197–387. https://doi.org/10.1561/2000000039 DOI: https://doi.org/10.1561/2000000039

Nithya, S. & Rani, M.S.” Deep Learning Model for Arrhythmia Classification with 2D Convolutional Neural Network”. In Innovations in Information and Communication Technologies, (pp. 1-11). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-19-3796-5_1

Nithya, S. & Rani, M.S.” Stacked Variational Autoencoder in the classification of Cardiac Arrhythmia using ECG Signals with 2D-ECG Images”. In International Conference on Intelligent Innovations in Engineering and Technology IEEE Xplore. 2022. DOI: https://doi.org/10.1109/ICIIET55458.2022.9967575

Ravi D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, and Yang G Z. Deep Learning for Health Informatics. IEEE Journal of Biomedical and Health Informatics, 2017, 21(1), 4–21. https://doi.org/10.1109/JBHI.2016.2636665 DOI: https://doi.org/10.1109/JBHI.2016.2636665

Lecun Y, Bengio Y, and Hinton G. Deep learning. Nature, 2015. 521(7553), 436–444. https://doi.org/10.1038/nature14539 DOI: https://doi.org/10.1038/nature14539

Prasoon A, Petersen K, Igel C, Lauze F, Dam E, and Nielsen M. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013. 8150 LNCS(PART 2), 246–253. https://doi.org/10.1007/978-3-642-40763-5_31 DOI: https://doi.org/10.1007/978-3-642-40763-5_31

O’Shea K and Nash R. An Introduction to Convolutional Neural Networks. 2015. arXiv:1511.08458v2, 1–11. http://arxiv.org/abs/1511.08458

LeCun Y, Bottou L, Bengio Y, and Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998. 86(11), 2278-2324. DOI: https://doi.org/10.1109/5.726791

Simonyan K and Zisserman A. Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1–14.

Mary Shanthi Rani, M., Chitra, P., Lakshmanan, S., Kalpana Devi, M., Sangeetha, R., & Nithya, S. “DeepCompNet: A Novel Neural Net Model Compression Architecture”. Computational Intelligence and Neuroscience, 2022 DOI: https://doi.org/10.1155/2022/2213273

Sangeetha, R., & Mary Shanthi Rani, M. “A novel method for plant leaf disease classification using deep learning techniques”. In Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication (pp. 631-643). Springer, Singapore, 2021. DOI: https://doi.org/10.1007/978-981-16-0289-4_46

Chung J, Gulcehre C, Cho K, and Bengio Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. 1–9. arXiv:1412.3555v1, 2014. http://arxiv.org/abs/1412.3555

Sak H, Senior A, and Beaufays F. Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition. Cd. 2014. arXiv:1402.1128v1. http://arxiv.org/abs/1402.1128. DOI: https://doi.org/10.21437/Interspeech.2014-80

Mikolov T, Kombrink S, Burget L, Černocký J, and Khudanpur S. Extensions of recurrent neural network language model. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2011. 5528–5531. https://doi.org/10.1109/ICASSP.2011.5947611 DOI: https://doi.org/10.1109/ICASSP.2011.5947611

Smith C and Jin Y. Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction. Neurocomputing, 143, 302–311. 2014. https://doi.org/10.1016/j.neucom.2014.05.062 DOI: https://doi.org/10.1016/j.neucom.2014.05.062

Manaswi N K. RNN and LSTM. In Deep Learning with Applications Using Python. 2018. (pp. 115-126). Apress, Berkeley, CA. DOI: https://doi.org/10.1007/978-1-4842-3516-4_9

Graves A. Long Short-Term Memory. 37–45. 2012. https://doi.org/10.1007/978-3-642-24797-2_4 DOI: https://doi.org/10.1007/978-3-642-24797-2_4

Hochreiter S. Long Short-Term Memory. Neural Computation, 1997. 1780, 1735–1780. DOI: https://doi.org/10.1162/neco.1997.9.8.1735

Gers F A, Schmidhuber J, and Cummins F. Learning to forget: Continual prediction with LSTM. IEE Conference Publication, 1999. 2(470), 850–855. https://doi.org/10.1049/cp:19991218 DOI: https://doi.org/10.1049/cp:19991218

Gers F A, Schraudolph N N, and Schmidhuber J. Learning precise timing with LSTM recurrent networks. Journal of Machine Learning Research, 2003. 3(1), 115–143. https://doi.org/10.1162/153244303768966139 DOI: https://doi.org/10.1162/153244303768966139

Scheiner N, Appenrodt N, Dickmann J, and Sick B. Radar-based road user classification and novelty detection with recurrent neural network ensembles. IEEE Intelligent Vehicles Symposium, Proceedings, 2019-June(Iv), 722–729. https://doi.org/10.1109/IVS.2019.8813773. DOI: https://doi.org/10.1109/IVS.2019.8813773

Nithya S. & Rani M.S.” Stacked LSTM and Kernel-PCA based Ensemble learning for Cardiac Arrhythmia Classification". IJACSA (Communicated).

Kiranyaz S, Ince T, and Gabbouj M. Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks. IEEE Transactions on Biomedical Engineering, 216. 63(3), 664–675. https://doi.org/10.1109/TBME.2015.2468589 DOI: https://doi.org/10.1109/TBME.2015.2468589

Rajpurkar P, Hannun A Y, Haghpanahi M, Bourn C and Ng A Y. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. 2017. http://arxiv.org/abs/1707.01836

Hong S, Wu M, Zhou Y, Wang Q, Shang J, Li H, and Xie J. ENCASE: An ENsemble ClASsifiEr for ECG classification using expert features and deep neural networks. Computing in Cardiology, 2017. 44, 1–4.

https://doi.org/10.22489/CinC.2017.178-245 DOI: https://doi.org/10.22489/CinC.2017.178-245

Pyakillya B, Kazachenko N, and Mikhailovsky N. Deep Learning for ECG Classification. Journal of Physics: Conference Series, 2017, 913(1). https://doi.org/10.1088/1742-6596/913/1/012004 DOI: https://doi.org/10.1088/1742-6596/913/1/012004

Andreotti F, Carr O, Pimentel M A F, Mahdi A, and De Vos M, Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG. Computing in Cardiology, 2017, 44, 1–4. https://doi.org/10.22489/CinC.2017.360-239 DOI: https://doi.org/10.22489/CinC.2017.360-239

Xiang Y, Lin Z, and Meng J. Automatic QRS complex detection using two-level convolutional neural network. BioMedical Engineering Online, 2018, 17(1), 1–17. https://doi.org/10.1186/s12938-018-0441-4 DOI: https://doi.org/10.1186/s12938-018-0441-4

Goodfellow S D, Goodwin A, Greer R, Laussen P C, and Eytan D. Towards Understanding ECG Rhythm Classification Using Convolutional Neural Networks and Attention Mappings.1–18. 2018. https://static1.squarespace.com/static/59d5ac1780bd5ef9c396eda6/t/5b73729d562fa79aabf87383/1534292642748/9.pdf

Ochiai K, Takahashi S, and Fukazawa Y. Arrhythmia detection from 2-lead ECG using convolutional denoising autoencoders. In Proc. KDD, 2018, (pp. 1-7).

Yıldırım O, Pławiak P, Tan R S, and Acharya U R. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Computers in Biology and Medicine, 2018. 102, 411–420. https://doi.org/10.1016/j.compbiomed.2018.09.009. DOI: https://doi.org/10.1016/j.compbiomed.2018.09.009

Anwar S M, Gul M, Majid M, and Alnowami M. Arrhythmia Classification of ECG Signals Using Hybrid Features. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2018/1380348. DOI: https://doi.org/10.1155/2018/1380348

Ribeiro A H, Ribeiro M.H, Paixão G, Oliveira D, Gomes P R, Canazart J A, Pifano M, Meira W, Schön T B, and Ribeiro A L. Automatic Diagnosis of Short-Duration 12-Lead ECG using a Deep Convolutional Network. 1–11. 2018. http://arxiv.org/abs/1811.12194.

Li J, Si Y, Xu T, and Jiang S. Deep Convolutional Neural Network Based ECG Classification System Using Information Fusion and One-Hot Encoding Techniques. Mathematical Problems in Engineering, 2018. https://doi.org/10.1155/2018/7354081 DOI: https://doi.org/10.1155/2018/7354081

Xu S S, Mak M W, and Cheung C C. Towards End-to-End ECG Classification with Raw Signal Extraction and Deep Neural Networks. IEEE Journal of Biomedical and Health Informatics, 2019, 23(4), 1574–1584. https://doi.org/10.1109/JBHI.2018.2871510 DOI: https://doi.org/10.1109/JBHI.2018.2871510

Chen Y, Du G, Mai J, Liu W, Wang X, You J, Chen Y, Xie Y, Hu H, Zhou S, and Wang J. (2018). Analysis of 12-lead electrocardiogram signal based on deep learning. International Journal of Heart Rhythm, 3(2), 55. https://doi.org/10.4103/ijhr.ijhr_4_18 DOI: https://doi.org/10.4103/IJHR.IJHR_4_18

Kim J H, Seo S Y, Song C G, Kim K S. Assessment of Electrocardiogram Rhythms by GoogLeNet Deep Neural Network Architecture. Journal of Healthcare Engineering. 2019. https://doi.org/10.1155/2019/2826901 DOI: https://doi.org/10.1155/2019/2826901

Ji Y, Zhang S, and Xiao W. Electrocardiogram classification based on faster regions with convolutional neural network. Sensors. 2019. Switzerland, 19(11). https://doi.org/10.3390/s19112558 DOI: https://doi.org/10.3390/s19112558

Rajkumar A, Ganesan M, and Lavanya R. Arrhythmia classification on ECG using Deep Learning. 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, 365–369. https://doi.org/10.1109/ICACCS.2019.8728362 DOI: https://doi.org/10.1109/ICACCS.2019.8728362

Kaouter K, Mohamed T, Sofiene D, Abbas D, and Fouad M. Full training convolutional neural network for ECG signals classification. AIP Conference Proceedings. 2019 https://doi.org/10.1063/1.5138541 DOI: https://doi.org/10.1063/1.5138541

Zhang Q, Fu L, and Gu L. A Cascaded Convolutional Neural Network for Assessing Signal Quality of Dynamic ECG. Computational and Mathematical Methods in Medicine. 2019. https://doi.org/10.1155/2019/7095137 DOI: https://doi.org/10.1155/2019/7095137

Moskalenko V, Zolotykh N, Osipov G. Deep learning for ECG segmentation. Studies in Computational Intelligence. 2020. 856, 246–254. https://doi.org/10.1007/978-3-030-30425-6_29 DOI: https://doi.org/10.1007/978-3-030-30425-6_29

Zheng Z, Chen Z, Hu F, Zhu J, Tang and Liang Y. An automatic diagnosis of arrhythmias using a combination of CNN and LSTM technology. Electronics (Switzerland), 2020. 9(1), 1–15.

https://doi.org/10.3390/electronics9010121 DOI: https://doi.org/10.3390/electronics9010121

H Tung, C Zheng, X Mao, and D Qian. (2020).Multi-Lead ECG Classification via an Information-Based Attention Convolutional Neural Network. 1–10. arXiv:2003.12009v1. http://arxiv.org/abs/2003.12009

Vijayarangan S, Murugesan B, Vignesh R, Preejith S P, Joseph J, and Sivaprakasam M. Interpreting Deep Neural Networks for Single-Lead ECG Arrhythmia Classification. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020. 300–303. https://doi.org/10.1109/EMBC44109.2020.9176396 DOI: https://doi.org/10.1109/EMBC44109.2020.9176396

Malik J, Soliman E Z, and Wu H T. An adaptive QRS detection algorithm for ultra-long-term ECG recordings. Journal of Electrocardiology,60, 165–171. 2020. https://doi.org/10.1016/j.jelectrocard.2020.02.016 DOI: https://doi.org/10.1016/j.jelectrocard.2020.02.016

Ribeiro A H, Ribeiro M H, Paixão G M M, Oliveira D M, Gomes P R, Canazart J A, Ferreira M P S, Andersson C R, Macfarlane P W, Wagner M, Schön T B, and Ribeiro A L P. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nature Communications,11(1), 2020. 1–9. https://doi.org/10.1038/s41467-020-15432-4. DOI: https://doi.org/10.1038/s41467-020-15432-4

Smigiel S, Palczynski,K, and Ledzinski, D. ECG signal classification using deep learning techniques based on the PTB-XL dataset. Entropy, 2021. 23(9), 1121. DOI: https://doi.org/10.3390/e23091121

Rahman, A. U., Asif, R. N., Sultan, K., Alsaif, S. A., Abbas, S., Khan, M. A., & Mosavi, A. ECG classification for detecting ECG arrhythmia empowered with deep learning approaches. Computational intelligence and neuroscience, 2022. DOI: https://doi.org/10.1155/2022/6852845

Khan, F., Yu, X., Yuan, Z., & Rehman, A. U. ECG classification using 1-D convolutional deep residual neural network. Plos one, 2023. 18(4), e0284791. DOI: https://doi.org/10.1371/journal.pone.0284791

Moody GB, Mark RG. (May-June 2001). The impact of the MIT-BIH Arrhythmia Database. IEEE Eng in Med and Biol 20(3):45-50 (PMID: 11446209). DOI: https://doi.org/10.1109/51.932724

Anthony Atkielski A. (2007, January 13). ECG of a heart in normal sinus rhythm [Figure].

https://en.wikipedia.org/wiki/Sinus_rhythm#/media/File:SinusRhythmLabels.svg.

Downloads

Published

24-06-2024

How to Cite

1.
Nithya S, Rani MMS, Sivakumar V. Classification of Cardiovascular Arrhythmia Using Deep Learning Techniques: A Review. EAI Endorsed Trans Perv Health Tech [Internet]. 2024 Jun. 24 [cited 2025 Jan. 22];10. Available from: https://publications.eai.eu/index.php/phat/article/view/6421