Towards PTSD Diagnosis Through ECG Anomaly Detection based on Autoencoders
DOI:
https://doi.org/10.4108/eetpht.11.9463Keywords:
PTSD Diagnosis, autoencoder, anomaly detection, ECG, deep learning in healthcareAbstract
INTRODUCTION: Post-Traumatic Stress Disorder (PTSD) is a debilitating mental health condition that can develop after exposure to traumatic events, often resulting in symptoms that severely impair daily functioning. Current diagnostic methods largely rely on subjective assessments, highlighting the need for objective, non-invasive tools to improve diagnostic precision.
OBJECTIVES: This study aims to develop and validate an innovative deep learning approach using autoencoder neural networks to detect PTSD through analysis of electrocardiography (ECG) signals. The goal is to provide a reliable and sophisticated diagnostic method that bridges computational and clinical domains.
METHODS: We employed autoencoder neural networks to analyze ECG data collected from wearable heart zone sensors. This unsupervised learning model was trained to detect subtle anomalies in the ECG signals that may serve as biomarkers for PTSD. The methodology was evaluated using data collected from individuals with and without PTSD symptoms.
RESULTS: The proposed model demonstrated strong potential as an objective diagnostic tool, successfully identifying patterns in ECG signals associated with PTSD. The analysis confirmed the model’s ability to distinguish PTSD-related anomalies with 83% accuracy.
CONCLUSION: This research introduces a novel, non-invasive diagnostic methodology for PTSD using deep learning and wearable ECG data. The findings support the model's value as a potential objective biomarker, contributing to more precise psychiatric diagnostics and expanding the role of machine learning in healthcare.
Downloads
References
[1] Vasileva, A.V., Karavaeva, T.A. and Radionov, D.S. (2023) Pharmacotherapy algorithm for posttraumatic stress disorder. V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY doi:10.31363/2313-7053-2023-741, URL https://www.bekhterevreview.com/jour/article/view/841. DOI: https://doi.org/10.31363/2313-7053-2023-741
[2] Palmer, S.C., Kagee, A., Coyne, J.C. and DeMichele, A. (2004) Experience of trauma, distress, and posttraumatic stress disorder among breast cancer patients. Psychosomatic Medicine 66(2): 258. doi:10.1097/01.psy.0000116755.71033.10. DOI: https://doi.org/10.1097/01.psy.0000116755.71033.10
[3] Friedman, M.J. (1996) PTSD diagnosis and treatment for mental health clinicians. Community Mental Health Journal 32(2): 173–189. doi:10.1007/BF02249755, URL https://doi.org/10.1007/BF02249755. DOI: https://doi.org/10.1007/BF02249755
[4] Othmani, A., Brahem, B., Haddou, Y. and Khan, M. (2023) Machine learning-based approaches for post-traumatic stress disorder diagnosis using video and eeg sensors: a review. preprint. doi:10.36227/techrxiv.21967115.v1, URL https://www.techrxiv.org/doi/full/10.36227/techrxiv.21967115.v1. DOI: https://doi.org/10.36227/techrxiv.21967115.v1
[5] Alamr, A. and Artoli, A. (2023) Unsupervised transformer-based anomaly detection in ecg signals. Algorithms 16(3): 152. doi:10.3390/a16030152, URL https://www.mdpi.com/1999-4893/16/3/152. DOI: https://doi.org/10.3390/a16030152
[6] Skaramagkas, V., Pentari, A., Kefalopoulou, Z. and Tsiknakis, M. (2023) Multi-modal deep learning diagnosis of parkinson’s disease—a systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering 31: 2399–2423. doi:10.1109/TNSRE.2023.3277749, URL https://ieeexplore.ieee.org/document/10129131. DOI: https://doi.org/10.1109/TNSRE.2023.3277749
[7] Skaramagkas, V., Boura, I., Karamanis, G., Kyprakis, I., Fotiadis, D.I., Kefalopoulou, Z., Spanaki, C. et al. (2025) Dual stream transformer for medication state classification in Parkinson’s disease patients using facial videos. npj Digital Medicine 8(1): 1–11. doi:10.1038/s41746-025-01630-1, URL https://www.nature.com/articles/s41746-025-01630-1. DOI: https://doi.org/10.1038/s41746-025-01630-1
[8] Ge, F., Yuan, M., Li, Y. and Zhang, W. (2020) Posttraumatic stress disorder and alterations in resting heart rate variability: a systematic review and meta-analysis. Psychiatry Investigation 17(1): 9–20. doi:10.30773/pi.2019.0112, URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992856/. DOI: https://doi.org/10.30773/pi.2019.0112
[9] Skaramagkas, V., Pentari, A., Fotiadis, D.I. and Tsiknakis, M. (2023) Using the recurrence plots as indicators for the recognition of Parkinson’s disease through phonemes assessment. In 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC): 1–4. doi:10.1109/EMBC40787.2023.10340177, URL https://ieeexplore.ieee.org/document/10340177. ISSN: 2694-0604. DOI: https://doi.org/10.1109/EMBC40787.2023.10340177
[10] Khazaie, H., Saidi, M.R., Sepehry, A.A., Knight, D.C., Ahmadi, M., Najafi, F., Parvizi, A.A. et al. (2013) Abnormal ecg patterns in chronic post-war ptsd patients: a pilot study. International Journal of Behavioral Medicine 20(1): 1–6. doi:10.1007/s12529-011-9197-y, URL https://doi.org/10.1007/s12529-011-9197-y. DOI: https://doi.org/10.1007/s12529-011-9197-y
[11] CARDIOCARE CONSORTIUM (2021) AN INTERDISCIPLINARY APPROACH FOR THE MANAGEMENT OF THE ELDERLY MULTIMORBID PATIENT WITH BREAST CANCER THERAPY INDUCED CARDIAC TOXICITY. CORDIS | European Commission URL https://cordis.europa.eu/project/id/945175.
[12] Wu, Y., Mao, K., Dennett, L., Zhang, Y. and Chen, J. (2023) Systematic review of machine learning in PTSD studies for automated diagnosis evaluation. npj Mental Health Research 2(1): 1–10. doi:10.1038/s44184-023-00035-w, URL https://www.nature.com/articles/s44184-023-00035-w. DOI: https://doi.org/10.1038/s44184-023-00035-w
[13] Ismail, N.H., Liu, N., Du, M., He, Z. and Hu, X. (2020) A deep learning approach for identifying cancer survivors living with post-traumatic stress disorder on Twitter. BMC Medical Informatics and Decision Making 20(4): 254. doi:10.1186/s12911-020-01272-1, URL https://doi.org/10.1186/s12911-020-01272-1. DOI: https://doi.org/10.1186/s12911-020-01272-1
[14] Lekkas, D. and Jacobson, N.C. (2021) Using artificial intelligence and longitudinal location data to differentiate persons who develop posttraumatic stress disorder following childhood trauma. Scientific Reports 11(1): 10303. doi:10.1038/s41598-021-89768-2, URL https://www.nature.com/articles/s41598-021-89768-2. DOI: https://doi.org/10.1038/s41598-021-89768-2
[15] Zafari, H., Kosowan, L., Zulkernine, F. and Signer, A. (2021) Diagnosing post-traumatic stress disorder using electronic medical record data. Health Informatics Journal 27(4): 14604582211053259. doi:10.1177/14604582211053259. DOI: https://doi.org/10.1177/14604582211053259
[16] Yang, J., Lei, D., Qin, K., Pinaya, W.H.L., Suo, X., Li, W., Li, L. et al. (2021) Using deep learning to classify pediatric posttraumatic stress disorder at the individual level. BMC Psychiatry 21(1): 535. doi:10.1186/s12888-021-03503-9, URL https://doi.org/10.1186/s12888-021-03503-9. DOI: https://doi.org/10.1186/s12888-021-03503-9
[17] Zhu, Z., Lei, D., Qin, K., Suo, X., Li,W., Li, L., DelBello, M.P. et al. (2021) Combining deep learning and graph theoretic brain features to detect posttraumatic stress disorder at the individual level. Diagnostics 11(8): 1416. doi:10.3390/diagnostics11081416, URL https://www.mdpi.com/2075-4418/11/8/1416. DOI: https://doi.org/10.3390/diagnostics11081416
[18] Gong, Q., Li, L., Tognin, S., Wu, Q., Pettersson-Yeo, W., Lui, S., Huang, X. et al. (2014) Using structural neuroanatomy to identify trauma survivors with and without post-traumatic stress disorder at the individual level. Psychological Medicine 44(1): 195–203. doi:10.1017/S0033291713000561. DOI: https://doi.org/10.1017/S0033291713000561
[19] Wu, H., Hu, W. and Fu, D. (2023) Autoencoder based on vmd and mutual information to detect depression from speech. In Proceedings of the 2022 4th International Conference on Robotics, Intelligent Control and Artificial Intelligence, RICAI ’22 (New York, NY, USA: Association for Computing Machinery): 424–428. doi:10.1145/3584376.3584453, URL https://doi.org/10.1145/3584376.3584453. DOI: https://doi.org/10.1145/3584376.3584453
[20] Park, H., Raymond Jung, M.W. and Oh, U. (2021) Apd: an autoencoder-based prediction model for depression diagnosis. In 2021 IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI): 376–379. doi:10.1109/IRI51335.2021.00058, URL https://ieeexplore.ieee.org/document/9599107. DOI: https://doi.org/10.1109/IRI51335.2021.00058
[21] Sewani, H. and Kashef, R. (2020) An autoencoder-based deep learning classifier for efficient diagnosis of autism. Children 7(10): 182. doi:10.3390/children7100182, URL https://www.mdpi.com/2227-9067/7/10/182. DOI: https://doi.org/10.3390/children7100182
[22] Weng, J.C., Lin, T.Y., Tsai, Y.H., Cheok, M.T., Chang, Y.P.E. and Chen, V.C.H. (2020) An autoencoder and machine learning model to predict suicidal ideation with brain structural imaging. Journal of Clinical Medicine 9(3): 658. doi:10.3390/jcm9030658, URL https://www.mdpi.com/2077-0383/9/3/658. DOI: https://doi.org/10.3390/jcm9030658
[23] Yamaguchi, H., Hashimoto, Y., Sugihara, G., Miyata, J., Murai, T., Takahashi, H., Honda, M. et al. (2021) Three-dimensional convolutional autoencoder extracts features of structural brain images with a “diagnostic label-free” approach: application to schizophrenia datasets. Frontiers in Neuroscience 15. URL https://www.frontiersin.org/articles/10.3389/fnins.2021.652987. DOI: https://doi.org/10.3389/fnins.2021.652987
[24] (2021), NeuroKit2: A Python toolbox for neurophysiological signal processing. URL https://github.com/neuropsychology/NeuroKit. Original-date: 2019-10-29T05:39:37Z.
[25] Weiss, D.S. (2007) The impact of event scale: revised. In Wilson, J.P. and Tang, C.S.k. [eds.] Cross-Cultural Assessment of Psychological Trauma and PTSD, International and Cultural Psychology Series (Boston, MA: Springer US), 219–238. DOI: https://doi.org/10.1007/978-0-387-70990-1_10
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vasileios Skaramagkas, Ioannis Kyprakis, Georgia Karanasiou, Dimitrios Fotiadis, Manolis Tsiknakis

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.
Funding data
-
Horizon 2020
Grant numbers 945175