Integrating Digital Transformation and AI in Civil Engineering: A Multidisciplinary Approach to Disaster Management and Sustainable Urban Development
DOI:
https://doi.org/10.4108/eetsc.7824Keywords:
Digital Transformation in Civil Engineering, Artificial Intelligence (AI) in Civil Engineering, Machine learning (ML) for Disaster Management, Sustainable and Resilient Urban Development, Virtual and Simulation-Based Engineering Education, Digital Twins and Infrastructure Modeling, AI-Powered Smart City Applications, Internet of Things (IoT) for Environmental Monitoring, Geospatial and Remote Sensing Technologies, Predictive Analytics for Infrastructure Resilience, Ethical and Sustainable AI Integration, Cross-Disciplinary Engineering Innovation, Information and Communication Technology (ICT) for Disaster Risk ReductionAbstract
The rapid advancement of digital technologies, particularly Artificial Intelligence (AI) and Machine Learning (ML), is ushering in a transformative era for civil engineering and disaster management. This paper outlines a multidisciplinary approach that harnesses the power of digital transformation to augment disaster preparedness, response mechanisms, and sustainable urban development. By integrating AI and ML innovations, Information and Communication Technology (ICT) advancements, and emerging technologies like quantum computing and blockchain, this study explores innovative digital solutions aimed at addressing critical challenges within the sector. Key focal points include the application of AI for early prediction and management of natural disasters, the strategic use of ICT in enhancing urban resilience, and the adoption of virtual simulation tools in education to bridge the theoretical-practical gap. Through an in-depth analysis of case studies—ranging from AI-powered mobile applications in smart city ecosystems to advanced materials engineering—this research highlights the potential of digital technologies to build resilient infrastructures, improve public health outcomes, and promote sustainable urban planning. This paper contributes to the ongoing discourse on the role of digital innovation in civil engineering, providing insights into the benefits and challenges of integrating technology into traditional practices, with the ultimate goal of achieving a more sustainable and resilient future.
Downloads
References
[1] Lin TH, Chang CT, Zhuang TH, Putranto A. Real-time hollow defect detection in tiles using on-device tiny machine learning. Measurement Sci Technol. 2024;35(5):056006. doi:10.1088/1361-6501/ad2665.
[2] Thapa I, Kumar N, Ghani S, et al. Applications of bentonite in plastic concrete. Asian J Civ Eng. 2024;25:3113-3128. doi:10.1007/s42107-023-00966-x.
[3] Reis JCG, Freires FGM, Vieira Junior M, eds. Industrial engineering and operations management: XXIX IJCIEOM. Springer; 2023. doi:10.1007/978-3-031-47058-5.
[4] Ren S, Chen S, Wang J, et al. Distributed photonic crystal fiber reverse design framework. Opt Fiber Technol. 2024;84:103718. doi:10.1016/j.yofte.2024.103718.
[5] Khodabakhshian A, Malsagov U, Re Cecconi F. Machine learning in construction delay and cost overrun risk assessment. In: Arai K, ed. Advances in information and communication (FICC 2024). Springer; 2024:222-240. doi:10.1007/978-3-031-54053-0_17.
[6] Pham SVH, Nguyen KVT. Performance review of RTI IMS software. Int J Constr Manag. 2024;25(4):439-455. doi:10.1080/15623599.2024.2331864.
[7] Kaswan KS, Dhatterwal JS, Prakash O, Balusamy B, Mon FA. Intelligence-based bioprinting for construction engineering. In: Gangadevi E et al., eds. Intelligence-based technologies. Wiley; 2024. doi:10.1002/9781394204878.ch9.
[8] Sandbhor S, Mulay P, Tiwari AK, Volkova E. Innovative ICT in smart buildings. Recent Pat Eng. 2024;18(5):105-120. doi:10.2174/1872212118666230517140351.
[9] Gohel P, Dabral R, Lad VH, Patel KA, Patel DA. AI in construction management. In: Nehdi ML et al., eds. AI applications for sustainable construction. Woodhead; 2024:285–300. doi:10.1016/B978-0-443-13191-2.00006-7.
[10] Praptika IPGE, Yusuf M, Heslinga JH. Preparing communities for disasters. J Tourism Futures. 2024;10(3):504–523. doi:10.1108/JTF-04-2023-0092.
[11] Divi N, Mantero J, Libel M, et al. Using EpiCore for rapid verification of health threats. JMIR Public Health Surveill. 2024;10:e52093. doi:10.2196/52093.
[12] Azeem MR, Rahman MM, Haque MS. Innovative techniques for damage control. Discover Disaster Res. 2024;4(1):17. doi:10.1016/j.ddare.2024.100017.
[13] Spasev V, Dimitrovski I, Kitanovski I, Chorbev I. Semantic segmentation of remote sensing images. In: Mihova M, Jovanov M, eds. ICT Innovations 2023. Springer; 2024:127–140. doi:10.1007/978-3-031-54321-0_9.
[14] Tang T, Luo T, Walton H. Resilience in complex disasters. Int J Disaster Risk Reduct. 2024;102:104298. doi:10.1016/j.ijdrr.2024.104298.
[15] Harsanto B. ICT innovation for disaster management. AIP Conf Proc. 2023;2680(1):020111. doi:10.1063/5.0126820.
[16] Urban F, Nordensvard J. Disaster risk reduction and climate adaptation. In: Urban F, Nordensvard J, eds. Handbook on climate change and technology. Edward Elgar; 2023:397–414. doi:10.4337/9781800882119.00032.
[17] Ahadzie DK, Proverbs D, Soetanto R, Oladokun VO, eds. Handbook of flood risk management and community action. Routledge; 2024. doi:10.1201/9781003315247.
[18] Coutinho FJM. Digital twin for plant floor kit. 2023. https://repositorio-aberto.up.pt/bitstream/10216/153363/2/646514.pdf.
[19] Acuña A, González-Almaguer C, Vázquez R, et al. Digital twins for learning in TEC21 model. In: EPDE 2023 Proceedings. Design Society; 2023.
[20] Silva CDCM, Silva MVCM. Interactivity and learning through gamification. In: Connecting expertise. Editora Científica Digital; 2023:1–15. doi:10.56238/Connexpemultidisdevolpfut.
[21] Bayashot ZA. AI-powered mobile apps in smart city ecosystems. J Softw Eng Appl. 2024;17:143–154. doi:10.4236/jsea.2024.173008.
[22] Clarke M, Zhao X, eds. Elgar Encyclopedia of Development. Edward Elgar; 2023. doi:10.4337/9781800372122.
[23] Mason BE. Advancing autonomous green stormwater infrastructure [dissertation]. Univ Michigan; 2023. doi:10.7302/7333.
[24] Silva GS, López-Droguett E. Quantum-based combinatorial optimization for sensor placement. arXiv. 2023. https://arxiv.org/abs/2305.08738.
[25] Bengoechea S, Over P, Jaksch D, Rung T. Variational quantum algorithms for transport phenomena. arXiv. 2024.: https://arxiv.org/abs/2411.14931.
[26] Celik BG, Abraham YS, Attaran M. Unlocking blockchain in construction. Buildings. 2024;14(6):1600. doi:10.3390/buildings14061600.
[27] Jadidoleslami S, Azizi M. Blockchain for project and construction management. J Inf Technol Manag. 2022;14:107–143. doi:10.22059/jitm.2022.87844.
[28] Sargiotis D. Ethical AI in information technology. Adv Mach Learn Artif Intell. 2024;5(3):1–14.
[29] Sargiotis D. Overview and importance of data governance. In: Data Governance. Springer; 2024:1–85. doi:10.1007/978-3-031-67268-2_1.
[30] Sargiotis D. Transforming civil engineering with AI and machine learning. SSRN; 2024. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5021723.
[31] Sargiotis D. Data Governance: A Guide. Springer; 2024. ISBN:978-3-031-67267-5.
[32] Sargiotis D. Advancing civil engineering with AI and ML. Svedberg Open Int J Adv Res Publ. 2024;5(3):54–81.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Dimitrios Sargiotis

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.