Deep Level Markov Chain Model for Semantic Document Retrieval
DOI:
https://doi.org/10.4108/eai.19-6-2018.155443Keywords:
Big data, information retrieval, feature reduction, Markov chain, probability inferenceAbstract
The task of researching and developing information retrieval systems is becoming important in the big data age. Current search methods try to mention to fast searching based on keyword matching or similar semantic between query and documents but have not got a really effective engine for semantic search . In this paper, we propose a method for information retrieval based on probability inference with the DLMC model to search by semantic equivalents and a topic word with score for fast searching. Results of the experimental with 952 Vietnamese documents show that our method is really effective for Vietnamese document retrieval system.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Scalable Information Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.