Destination Prediction by Identifying and Clustering Prominent Features from Public Trajectory Datasets
DOI:
https://doi.org/10.4108/sis.2.5.e2Keywords:
Trajectory Mining, Destination PredictionAbstract
Destination prediction is an essential task in many location-based services (LBS) such as providing targeted advertisements and route recommendations. Most existing solutions were generative methods that model the problem as a series of probabilistic events that are then used to compute the destination probability using Bayes’ rule. In contrast, we propose a discriminative method that chooses the most prominent features found in a public trajectory dataset, clusters the trajectories into groups based on these features, and performs destination prediction queries accordingly. Our method is more concise and simple than existing methods while achieving better runtime efficiency and prediction accuracy as verified by experimental studies.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Scalable Information Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.