Music Emotion Recognition Based on Long Short-Term Memory and Forward Neural Network
DOI:
https://doi.org/10.4108/eai.27-1-2022.173162Keywords:
music emotion recognition, long short-term memory, forward neural network, MFCC, RPAbstract
This article has been retracted, and the retraction notice can be found here: http://dx.doi.org/10.4108/eai.8-4-2022.173793.
In this paper, we propose a new music emotion recognition method based on long short-term memory and forward neural network. First, Mel Frequency Cepstral Coefficient (MFCC) and Residual Phase (RP) are weighted to extract music emotion features, which improves the recognition efficiency of music emotion features. Meanwhile, in order to improve the classification accuracy of music emotion and shorten the training time of the new model, Long short-term Memory network (LSTM) and forward neural network (FNN) are combined. Using LSTM as the feature mapping node of FNN, a new deep learning network (LSTM-FNN) is proposed for music emotion recognition and classification training. Finally, we conduct the experiments on the emotion data set. The results show that the proposed algorithm achieves higher recognition accuracy than other state-of-the-art complex networks.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Scalable Information Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.