Optimization Algorithm for Blockchain Data Storage and Retrieval Based on DHT
DOI:
https://doi.org/10.4108/eetsis.8189Keywords:
Distributed Hash Table, Blockchain, Storage, Archiving, Network NodesAbstract
INTRODUCTION: Each node keeps the identical block data in the decentralized, tamper-proof distributed ledger known as the blockchain.
OBJECTIVES: A blockchain network's working time lengthens, the amount of data that nodes must preserve and synchronize increases noticeably.
METHODS: This brings up significant storage performance difficulties. We have started a study from a blockchain data storage standpoint to address this storage performance issue. We propose a distributed hash table (DHT)-based blockchain data archiving approach by analyzing the redundancy state caused by every node in the current blockchain network containing the same data. The block data is introduced in three ways: archived data building, lookup, and interaction with the underlying chain.
RESULTS: This is done to ensure that blockchain data is not lost and can be accessed. This reduces storage redundancy and satisfies the practical requirements of storage and access in the blockchain's initial application.
CONCLUSION: Experiments on energy transaction data show that the technique suggested in this article has a considerably lower storage occupancy increase rate than fabric storage.
References
[1] Alizadeh, M., Andersson, K., & Schelén, O. (2022). DHT-and blockchain-based smart identification for video conferencing. Blockchain: Research and Applications, 3(2), 100066. https://doi.org/10.1016/j.blcra.2022.100066
[2] Mubashar, A., Asghar, K., Javed, A. R., Rizwan, M., Srivastava, G., Gadekallu, T. R., ... & Shabbir, M. (2022). Storage and proximity management for centralized personal health records using an IPFS-based optimization algorithm. Journal of Circuits, Systems and Computers, 31(01), 2250010. https://doi.org/10.1142/S0218126622500105
[3] Nartey, C., Tchao, E. T., Gadze, J. D., Yeboah-Akowuah, B., Nunoo-Mensah, H., Welte, D., & Sikora, A. (2022). Blockchain-IoT peer device storage optimization using an advanced time-variant multi-objective particle swarm optimization algorithm. EURASIP Journal on Wireless Communications and Networking, 2022(1), 1-27. https://doi.org/10.1186/s13638-022-02122-9
[4] Zhao, J., Zhang, D., Liu, W., Qiu, X., & Brusic, V. (2022). DHT-based blockchain dual-sharding storage extension mechanism. Applied Sciences, 12(19), 9635. https://doi.org/10.3390/app12199635
[5] Nguyen, D. C., Pathirana, P. N., Ding, M., & Seneviratne, A. (2021). BEdgeHealth: A decentralized architecture for edge-based IoMT networks using blockchain. IEEE Internet of Things Journal, 8(14), 11743-11757. https://doi.org/10.1109/JIOT.2021.3069520
[6] Hassanzadeh-Nazarabadi, Y., Küpçü, A., & Ozkasap, O. (2019). Decentralized utility-and locality-aware replication for heterogeneous DHT-based P2P cloud storage systems. IEEE Transactions on Parallel and Distributed Systems, 31(5), 1183-1193. https://doi.org/10.1109/TPDS.2019.2919733
[7] Aslam, S., Bukovszki, V., & Mrissa, M. (2021). Decentralized data management privacy-aware framework for positive energy districts. Energies, 14(21), 7018. https://doi.org/10.3390/en14217018
[8] Liu, T., Wu, J., Li, J., Li, J., & Zhang, Z. (2022). Efficient algorithms for storage load balancing of outsourced data in blockchain network. The Computer Journal, 65(6), 1512-1526. https://doi.org/10.1093/comjnl/bxz128
[9] Zhang, J., Zhong, S., Wang, J., Yu, X., & Alfarraj, O. (2021). A storage optimization scheme for blockchain transaction databases. Computing and Systems in Science and Engineering, 36(3), 521-535. https://doi.org/10.32604/csse.2021.015434
[10] Zhao, Y., Li, Q., Yi, W., & Xiong, H. (2023). Agricultural IoT data storage optimization and information security method based on blockchain. Agriculture, 13(2), 274. https://doi.org/10.3390/agriculture13020274
[11] Hassanzadeh-Nazarabadi, Y., Küpçü, A., & Özkasap, Ö. (2021). LightChain: Scalable DHT-based blockchain. IEEE Transactions on Parallel and Distributed Systems, 32(10), 2582-2593. https://doi.org/10.1109/TPDS.2020.3014869
[12] Feng, H., Wang, J., & Li, Y. (2022). A blockchain storage architecture based on information-centric networking. Electronics, 11(17), 2661. https://doi.org/10.3390/electronics11172661
[13] Fan, X., Niu, B., & Liu, Z. (2022). Scalable blockchain storage systems: Research progress and models. Computing, 104(6), 1497-1524. https://doi.org/10.1007/s00607-022-01008-z
[14] Alagarsundaram, P., & Carolina, N. (2021). Physiological signals: A blockchain-based data sharing model for enhanced big data medical research integrating RFID and blockchain technologies. J Comput Sci, 9(2), 12-32.
[15] Guo, J., Li, C., & Luo, Y. (2022). Blockchain-assisted caching optimization and data storage methods in edge environment. The Journal of Supercomputing, 78(16), 18225-18257. https://doi.org/10.1007/s11227-022-04692-0
[16] Wang, X., Liu, J., & Zhang, C. (2023). Network intrusion detection based on multi-domain data and ensemble-bidirectional LSTM. EURASIP Journal on Information Security, 2023(1), 5. https://doi.org/10.1186/s13635-023-00159-5
[17] Gai, K., Guo, J., Zhu, L., & Yu, S. (2020). Blockchain meets cloud computing: A survey. IEEE Communications Surveys & Tutorials, 22(3), 2009-2030. https://doi.org/10.1109/COMST.2020.2970749
[18] Yang, J., Jia, W., Gao, Z., Guo, Z., Zhou, Y., & Pan, Z. (2023). Cuckoo-Store engine: A Reed–Solomon code-based ledger storage optimization scheme for blockchain-enabled IoT. Electronics, 12(15), 3328. https://doi.org/10.3390/electronics12153328
[19] Antwi, R., Gadze, J. D., Tchao, E. T., Sikora, A., Nunoo-Mensah, H., Agbemenu, A. S., ... & Keelson, E. (2022). A survey on network optimization techniques for blockchain systems. Algorithms, 15(6), 193. https://doi.org/10.3390/a15060193
[20] Li, D., Luo, Z., & Cao, B. (2022). Blockchain-based federated learning methodologies in smart environments. Cluster Computing, 25(4), 2585-2599. https://doi.org/10.1007/s10586-022-03688-9
[21] Zaabar, B., Cheikhrouhou, O., Jamil, F., Ammi, M., & Abid, M. (2021). HealthBlock: A secure blockchain-based healthcare data management system. Computer Networks, 200, 108500. https://doi.org/10.1016/j.comnet.2021.108500
[22] Mughal, M. H., Shaikh, Z. A., Ali, K., Ali, S., & Hassan, S. (2022). IPFS and blockchain-based reliability and availability improvement for integrated rivers' streamflow data. IEEE Access, 10, 61101-61123. https://doi.org/10.1109/ACCESS.2022.3182704
[23] Putz, B., Dietz, M., Empl, P., & Pernul, G. (2021). Ethertwin: Blockchain-based secure digital twin information management. Information Processing & Management, 58(1), 102425. https://doi.org/10.1016/j.ipm.2020.102425
[24] Praveen, M. D., Totad, S. G., Rashinkar, M., Ostwal, R., Patil, S., & Hadapad, P. M. (2022). Scalable blockchain architecture using off-chain IPFS for marks card validation. Procedia Computer Science, 215, 370-379. https://doi.org/10.1016/j.procs.2022.01.060
[25] Deshpande, V., Badis, H., & George, L. (2022). Efficient topology control of blockchain peer-to-peer network based on SDN paradigm. Peer-to-Peer Networking and Applications, 15(1), 267-289. https://doi.org/10.1007/s12083-021-00386-z
[26] Miyachi, K., & Mackey, T. K. (2021). hOCBS: A privacy-preserving blockchain framework for healthcare data leveraging an on-chain and off-chain system design. Information Processing & Management, 58(3), 102535. https://doi.org/10.1016/j.ipm.2020.102535
[27] Wei, Q., Li, B., Chang, W., Jia, Z., Shen, Z., & Shao, Z. (2022). A survey of blockchain data management systems. ACM Transactions on Embedded Computing Systems (TECS), 21(3), 1-28. https://doi.org/10.1145/3523071
[28] Ghazali, R., & Down, D. G. (2025). Smart Data Prefetching Using KNN to Improve Hadoop Performance. EAI Endorsed Transactions on Scalable Information Systems, 12(3).https://doi.org/10.4108/eetsis.9110
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Zhijun Xie, Lijuan Zheng

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.
