A Novel Comparative Analysis of Solar P&O, ANN-based MPPT Controller under Different Irradiance Condition

Authors

  • Pavithra C Sri Krishna College of Engineering and Technology
  • Dhayalan R Sri Krishna College of Engineering and Technology
  • Anandha Kumar S Sri Krishna College of Engineering and Technology
  • Dharshan Y Sri Krishna College of Engineering and Technology
  • Haridharan R Sri Krishna College of Engineering and Technology
  • Vijayadharshini M Sri Krishna College of Engineering and Technology

DOI:

https://doi.org/10.4108/ew.4942

Keywords:

PV system, P&O, ANN, MPPT

Abstract

The depletion of fossil fuels and rising energy demand have increased the use of renewable energy. Among all Solar PVs, system-based electricity production is increased due to multiple advantages. In this paper a Solar PV system with an Artificial Neural Network (ANN)-based Maximum Power Point Tracking (MPPT) controller is developed. ANN has multiple advantages like stability, improved dynamic response, and fast and precise output. The System is modelled with a DC-DC boost converter with Perturb and Observe (P&O)-based MPPT controller which is operated in MATLAB-based Simulink model. Both the controller output is analyzed and compared, among these two controllers ANN has very fast and more precise output under dynamic conditions.

Downloads

References

Vijay K Sood, Haytham Abdel Gawad. Power converter solutions and controls for green energy. DERM. 2019; 357-387. DOI: https://doi.org/10.1016/B978-0-12-817774-7.00014-4

Zegaoui, Aillerie M, Petit P, Sawicki J P, Charles J P, Belarbi A W. Dynamic behaviour of PV engine converting energy trackers under dissemination and heat changes. SE. 2011; 85; 2953–2964. DOI: https://doi.org/10.1016/j.solener.2011.08.038

Babu W R, Pushpalatha N, Catherine L, Janani K, Kanase S S and Patil P. Review and Comparison on Types of Solar Tracking using PNT Systems. ICICCS. 2023; 1697-1701. DOI: https://doi.org/10.1109/ICICCS56967.2023.10142648

Pushpalatha N, Devi B P, Sharma V and Alkhayyat A. A Comprehensive Study of AI-based Optimal Potential Point Tracking for Solar PV Frameworks. GlobConET. 2023; 1-5. DOI: https://doi.org/10.1109/GlobConET56651.2023.10149990

Pushpalatha N, Jabeera S, Hemalatha N, Sharma V, Balusamy B and Yuvaraj R. A Succinct Summary of the Solar MPPT Utilizing a Diverse Optimizing Compiler. IC3I. 2022; 1177-1181. DOI: https://doi.org/10.1109/IC3I56241.2022.10072844

Dutta R and Gupta R P. Performance analysis of MPPT based PV system: A case study. ICEFEET, 2022; 1-6 DOI: https://doi.org/10.1109/ICEFEET51821.2022.9847729

Pavithra C, Pooja Singh B, Venkatesa Prabhu S. A brief overview of maximum power point tracking algorithm for solar PV system. MTP. 2021. DOI: https://doi.org/10.1016/j.matpr.2021.01.220

Kaushik C, Garg R and Priya Mahajan P. Comparison of MPPT Algorithms Under Uniformly Varying Atmospheric Conditions. ICICICT, 2022. DOI: https://doi.org/10.1109/ICICICT54557.2022.9917652

Pavithra C, Geethamani R. A Noval Improved Variable Step-Size Incremental Resistance MPPT Controller for PV System Under Partial Shading Condition. JCTN. 2019; 16; 740- 744. DOI: https://doi.org/10.1166/jctn.2019.7801

Saravanan S, Ramesh Babu N. RBFN-based MPPT algorithm for PV system with high step-up converter. Elsevier BV. 2016; 122; 239-251. DOI: https://doi.org/10.1016/j.enconman.2016.05.076

Manna S and Akella A K. Comparative analysis of various P & O MPPT algorithm for PV system under varying radiation condition. ICPEE. 2021; 1-7. DOI: https://doi.org/10.1109/ICPEE50452.2021.9358690

Pavithra C, Geethamani R, Radhakrishnan G, Kishore Kumar S, and Manoj C. A Novel Grid Integrated Perturb and Observe MPPT Controlled Photovoltaic Power Plant for Power Enhancement. JCTN. 2019; 16; 410-416. DOI: https://doi.org/10.1166/jctn.2019.7741

Bouakkaz M S, Boukadoum A, Boudebbouz O, Bouraiou A, Boutasseta N and Attoui I. ANN based MPPT Algorithm Design using Real Operating Climatic Condition. ICMIT. 2020; 1-8. DOI: https://doi.org/10.1109/ICMIT47780.2020.9046972

Roy R B, Rokonuzzaman M D, Amin N, Mishu M K, Alahakoon S, Rahman S. A Comparative Performance Analysis of ANN Algorithms for MPPT Energy Harvesting in Solar PV System. IEEE Access. 2021; 9; 102137-102152 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3096864

Ujjwal Kumar Kalla, Senior Member. A Normalized Neural Network Based Controller for Power Quality Improved Grid Connected Solar PV System. PIICON. 2016; 1-7.

Bhim Singh, Dilip Tekchand Shahani, Arun Kumar Verma. Neural network-controlled grid interfaced solar photovoltaic power generation. IET. 2014; 7(3); 614-626. DOI: https://doi.org/10.1049/iet-pel.2013.0166

Sathiya Bama S, Dr. K Punitha. Artificial Neural Network for Control and Grid Integration of Floating Solar Photovoltaic System. IJAREEIE. 2018; 7 (11).

Downloads

Published

26-01-2024

How to Cite

1.
C P, R D, S AK, Y D, R H, M V. A Novel Comparative Analysis of Solar P&O, ANN-based MPPT Controller under Different Irradiance Condition. EAI Endorsed Trans Energy Web [Internet]. 2024 Jan. 26 [cited 2025 Apr. 1];11. Available from: https://publications.eai.eu/index.php/ew/article/view/4942